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The Bianchi Models

Classes of non-standard cosmological models that are in principle
spatially homogeneous but anisotropic

Considered as a generalization of the well-known standard
Friedman-Lemaftre-Robertson-Walker (FLRW) models of cosmology

Luigi Bianchi classified them according to their construction of
homogeneous surfaces in space-time; constructed by the action of a
3-dimensional group of isometrics Gz upon the space-like 3—surfaces

Of great cosmological interest because they provide a way of
studying the anisotropy at an early period of our universe's
expansion history



The Cosmological Constant N\

» One of the most puzzling and unsolved problems in physics today is
the so-called Cosmological Constant Problem

» Cosmology: regarded as a matter field with negative pressure (or as
a vacuum energy density) that drives the accelerated expansion of
the universe

» Value shows huge discrepancy with QFT-predicted value of vacuum
energy

® A new thought is required to explain this puzzle

® Consider the cosmological models as varying vacuum energy density?

® Chen ! considered A proportional to 1/a2, and Carvalho et. al. 2
studied the generalized form A = a/a*> + SH?, which depends on
adjustable parameters a and 3 of the quantum field on a curved and
expanding background, the Hubble parameter H and the average
scale factor of the universe a(t)

1Y.S. W. Chen (1990), PRD 41, 695
2J. C. Carvalho, J.A.S. Lima, and |. Waga (1992), PRD 46, 2404



The Newtonian Constant G

» A coupling constant between the geometry of spacetime and energy
in GR

» The universe evolves with time

® Natural to assume that G varies with time, too

® First considered by Dirac 3

® Many attempts to modify GR, but none of these efforts have yet
been universally accepted

® Recent interest in studying modifications of GR with variable
cosmological and Newtonian ‘constants’

» Such studies include # Ssolving the EFEs for a Bianchi Type-V
model with variable cosmological and Newtonian ‘constants’ for a
stiff perfect fluid

® The model has a singularity point, and G , A and the shear
parameter o decrease with cosmic time, with the model isotropizing
at late times

® The universe described by such a model expands at a constant rate
(i.e., the deceleration parameter equals zero)

3P. A. M. Dirac (1937), “The Cosmological Constants", Nature 139, 323
4U. K. Dwivedi (2012), IJPMS 2 6
5A. K. Yadav (2013), EJTP 10 28



General Solutions

» Existing solutions: special cases where the values of o and 3 are
chosen a priori

® The ‘cosmological constant’ decreases with time and it reaches a
small positive value at late times

» In this work, we intend to show % 7

® The exact general solution of the EFEs for Bianchi type-V models
for a stiff perfect fluid with variable A and G without making any
constraints on the value of & and 3 in the A term, and to describe
the behavior of the physical and kinematical parameters of the
models

® The numerical solution of the general system of the reducible EFEs
of the Bianchi type—V model with variable G and A for realistic
perfect-fluid forms: baryonic matter, radiation and dark energy

6Based on A. Alfedeel, AA, M. Gubara (2018), Universe, 4(8), 83
7A. Alfedeel, AA, in preparation



The Bianchi-V Cosmological Models

Assume the spatially homogeneous and anisotropic Bianchi type-V
space-time 8

ds? = —dt? + A%(t)dx* + e [B?(t)dy? + C3(t)dz?]

with perfect-fluid matter forms with energy-momentum tensor

Tij = (p+ p)uiu; + pgj

where p is matter density, u' = §i = (—1,0,0,0) is the normalized fluid
four-velocity, which is a time-like quantity such that u’u; = —1, and p is
the fluid's isotropic pressure. p and p are related through the barotropic
equation of state

p=wp, 0<w<l1

where w is the equation-of-state (EoS) parameter.

8¢ =1 is assumed throughtout.



The EFEs with time-dependent A and G are given by

1
Rj — S8R = —8mG(t) Tj + gy\(t)

where Rj; and gj; are the Ricci and metric tensors respectively, and R is
the Ricci scalar. Explicitly, the EFEs for Bianchi-V read:

AB BC AC 3

28 T BC T ac — a — & +A()
ot oe = —BrG(t)p A
A A = enG(p A
4 2 B2 = —enG(t)p + A(Y)
A B _C



The covariant divergence of the L.H.S of the EFEs produces

A B C L

while the conservation of the energy-momentum tensor yields

) A B C
p+(p+p) Z+§+E =0

Using these two equations together, we obtain

8rpG+A=0

This equation shows how A and G evolve with time and that they do not
evolve independently of each other.



The average scale factor a = a(t) for Bianchi-V models is
a= (ABC)'/3

and the generalized Hubble parameter H is defined as

;31AB'C
3

1
H= —+ =+ =] ==(H H-: H.
R +B+C) 3(1+ b + Hs)

where Hi, H> and Hjs are directional Hubble's parameters along x, y and
z directions respectively. The volume expansion 6 is defined as

0 =Vu'=3H
The deceleration parameter g follows the usual definition

_aa H
T



The shear module o parameter is given by

L 1 (R B &
0250”0_2 wtgEte) e

LR B 18 b K
T3\ A2 C? 3\AB BC AC

where the term o¥ represents the shear tensor. For this model, its scalar
quantity

=2
where K is a positive constant that is related to the anisotropy of the
model. Having introduced these quantities, we can re-express the field
equations in terms of a, H, g and o:

é+2é—2—£—4 G(t)p(1 — w) + A(t)
a @ oa T TR
87Gp—N= (29— 1)H* — o +i

A2
3
81Gp+ A =3H? — 52 ]



Integrating

and absorbing the integration constant into A or B, gives
A’ =BC = a(t)=A

Some more steps and we arrive at:

= dvexp (ku [ )

= drexp (k2 [ )

N NaNviiNa vy

= dsexp (ks [ )

d;i , ki (i=1,2,3) are all integration constants. These equations can be
combined to give

B :mlaexp(kf%)
C =maexp(—k[%)

where my , m, and k are constant values that depend on the
undetermined constants di, d>» and ds.



Rewrite the acceleration equation assuming the parametrization of A

A(t) = % + BH?

so that

a3+ (2-p)a% —(a+2)=0

This is the generalized Friedman equation (GFE) of Bianchi type-V
models. The first term a3 represents force per unit mass times distance
or work of a system that is equivalent to a potential energy, the second
term (2 — 3)a? is a kinetic energy and (2 — /3) is a kind of mass, and the
last term is a kind of total energy of the system.



The General Solution

For o # —2, 3 # 2, the GFE is a non-linear second-order DE

For the special cases of &« = —2, 3 = 2, the model has a scale factor
solution that grows linearly with cosmic time, i.e.,

a(t) = CGit+ ag

where C; and 3y are integration constants

This solution has a constant expansion and an initially increasing A
that asymptotes to a constant value later on, and a decreasing G

The model describes an expanding universe with an overall increasing
volume, and that asymptotically approaches isotropy at late times
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On the other hand, for 5 # 2,3 and a = —2, the model provides a
solution of the form

a(t) = [(3 - B) (Cat + G377

» This solution reduces to the linear expansion solution above when
we fix § =2

» Although the general behaviour of V' and o remains the same
(infinitely increasing and asymptotically vanishing at time infinity,
respectively), the behaviours of A and G depend on the choice of 8

» For example, different behaviour is observed when 8 =1 and
S = —0.5 as shown
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The non-linear (o # —2, 8 # 2) GFE can be integrated once to obtain

2
P aﬂﬂ—2>::(CY+' >

(B-2) 2-p
the solution of which is given by
1 1 1 c a+2
F= 1 : 2A6-2) ) — 4
7 1(2’2@—2)’ T2 (@t d)° 2-5'

where § # 2 and a # —2, T =t — tg and »F; is the hypergeometric
function.
» General form of the solution
» Cannot be simplified into an analytical expression for a as an explicit
function of time unless we have to make some specific choices on
the values of v and (8



e The General Solution

e Modell: B =1



Model I: 3 =1

If we choose 3 =1, the GS reduces to a power solution for a:

I 2
= 2|72+ ———
a a+ [7’ +(a+2)2}
H=?o T
a 2
T+(a+2)2
K K
O’:;: = 3
5 |2
[\/a—i— T 4+ (a+2)2}
_ Po _ Po
= %= 3
2)72
a2t <]
A 31502 +8a+4
G:_/ Tt e i e s P S
8T p 8mpo 47 po

_ éa_ c
T=72 7 (ar2em



The three (anisotropic) scale factors can be computed to be:

A=+ 2, /7% +

o+ T +2
B = ByV +21/2

0V & T +2 exp \/a+2\/ c

(a+2)
C=GVa+2,/m+ T
\/a+2 c
\/ Jr(04—&-2)2

const ,Co = m2econst

where By = mye are constants of integration.
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» Initial point of singularity at t =ty and ¢ =0
» Ast — oo, H,0,0,A,q,p all decrease with time, whereas G, V,
A, B and C increase
» Although the numerical values of A and g decrease asymptotically
towards constant values, whether the model describes an accelerated
or decelerated expansion solely depends on the sign of ¢
® For example, a positive choice of ¢ describes an early accelerated
expansion that eventually slows down to an asymptotically constant
expansion, whereas a negative ¢ describes an early decelerated
expansion that eventually asymptotes to a constant expansion at late
times
» |0/6] — 0 as t — oo, thus indicating that the model approaches
isotropy for large values of t °

9As observed in Dwivedi (2012) IJPMS 2 6 as well.



In redshift space, we can show that the deceleration parameter for the
model can be given by
Cla+2)(1+2)?
o) = Clo+20+2)
C(1+2z2)2—(a+2)

» Transition from an early deceleration epoch (at large redshifts) to
late-time acceleration (at small redshifts), with a mathematical
singularity occuring at the value of z for which
C(1+2z)?> — (a+2) =0, and hence the singular point can be shifted
either way by choosing appropriate values of a and C
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e Model II: The Emden-Fowler Approach

e The General Solution



Comparing the non-linear GFE to the first integral of the Emden-Fowler
equation

a=rt"a"

which, for n =0, is given by

) 2r gmt1

_m+1 =°

where m , n,r and s are constants, results in the particular solution

_[Q(m—i-l)]’"ll =

tI
r(m—1)2

Thus comparing the Emden-Fowler (n = 0) equation and the GFE, we
find that m =28 — 5 and r = ¢, and a(t) reads

[(ﬂ 3)%*2 rlﬁ

» Generalization of all work that has been done on Bianchi-V
cosmological models with varying A and G




Cosmological parameters of the model:

1 1
H = z
3-5)t
Po
P= =
(6-3) /35 1]
K K
O':;: %
(6-3) /5% 1|
aa
g=-"5 =24

Thus this model can have
» g > 0 (deceleration) if 5 < 2
» g < 0 (acceleration) if 8 > 2
» g = 0 (constant expansion) if 5 =2




The direct substitution of a(t) in the A expression yields:

ol c 7 B 1

_ {(ﬂ N
EEANIYI _M _ %_Mﬁ
/ dt = 8mpo(B — 2)3 {C(ﬁ 3)t > t

and the metric variables can be computed as

C ﬁ
B:Bo{(6—3) th] x

exp{k(ﬂ33) {(53) 6i2]ﬂ33t3ﬁﬂ}

C:Co[(ﬁ—3) 562 tr_ﬁx

eXP{ ﬁ 3) [6 3)
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The above results show that the model has a point of initial
singularity (Big Bang) at t =0

The model represents a contracting universe solution where V' and
both A and G simultaneously decrease, while H, 8, o and p all
increase as time increases, with H asymptotically approaching zero
from below

Note that the model produces a constant deceleration of the
expansion for acceptable values of 3

The expansion rate 6 of the universe slows down as time increases,
with the expansion eventually stopping, the ratio of |o/6| — co as
t — oo thus predicting that the universe in this model becomes
more anisotropic at late times

Moreover, as t — oo, the metric components A, B and C approach
zero rapidly, and a — 0, which, with an even more rapidly increasing
energy density, potentially results in a Big Crunch



Numerical Solutions
Here we use numerical integration methods and solve the coupled system:

8mpG+A=0

. =2 2
g +(2- ,8)% — ;a =47 G(t)p(1 — w)

for realistic perfect fluids dust matter, radiation and dark energy).
Rewerite system as:

da

“_z

dt

% o dai 22 ﬂ C1G

dt a a  adwt2

dG Z
=+ b 2P -G
dt a

where a; = (2— ), b =2+ a) , aa =4(1 — w)po ,
a=(a(l=08)=28)/4po , b =3 —8)/4po , and c = B (1 — w)
» It is important to know that the average scale factor of Bianchi
type-V model a(t) # 0 as t — 0 which implies a # 0, Z # 0 and

G 2 0 are finite at the time of the Big Bang



» System numerically solved for non-stiff perfect fluid models

» First attempt at numerical results for 5 = 0.5 and several values of
aintherangel1 < a <2

» Preliminary observations:

® |n each model, V and G increase with time except G in the
dark-energy-dominated model, which increases at early times and
then decreases later on

® g, 0/6 and A decrease with time, which indicates that the universe
in each model becomes isotropic at late times

® The deceleration parameter g behaves differently depending on the
EoS of each model, that is, for a matter-dominated universe where
w = 0, it asymptotically increases from a negative value to reach a
constant value at zero and for a radiation-dominated universe, it
asymptotically increases from a negative to positive value less than 1
as « increases, and for a dark-energy-dominated universe when EoS
w = —1, g asymptotically negatively increases to approach a
negative value less than —1



Q Numerical Solutions

o Casel:w =0



Vi)

The Case of Dust

[0}

o)




time

10
time



Q Numerical Solutions

o Casell:w=1/3
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The Case of Radiation
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Q Numerical Solutions

o Casell:w= —1



The Case of Dark Energy
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Summary

General exact solutions for Bianchi Type-V cosmological models for
a stiff perfect fluid with time varying cosmological and gravitational
‘constants’ without prior choice of the quantum-field-theoretically
adjustable parameters « and § that define the cosmological constant
as A = a/a® + BH?
Two cosmological models obtained with a choice of suitably fixed
values of 8 and through the transformation of the generalized
Friedman equation into a special case of the Emden-Fowler equation
The dynamical and kinematical parameters of each model are
computed exactly

® While one of these models results in a universe that asymptotically

isotropizes at late times, the other becomes increasingly anisotropic

Simple numerical computation implemented to see the general
behaviour of the cosmological parameters for more realistic
perfect-fluid models; work in progress...
As more precise data become available, it will, in principle, be
possible to constrain the different model parameters that we chose
arbitrarily in this study to get a better picture of this class of
cosmological models
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