Institute of Physics of La Plata (IFLP - CONICET)
La Plata National University (UNLP)

Neutrinos as Tracers of Dark Matter?

A. V. Penacchioni and O. Civitarese

 ana.penacchioni@fisica.unlp.edu.arJuly 18, 2019
DSU $15^{\text {th }}$ International Conference, Buenos Aires, Argentina

Content

Introduction

Neutrino oscillations
Oscillations in vacuum
Neutrino oscillations in vacuum
Neutrino oscillations in a DM environment
Results
Discussion

Conclusions

Introduction

- Extragalactic neutrinos, produced in sources like GRBs, AGNs, SN explosions, etc, may experience flavor-oscillations and decoherence as they travel towards the Earth. Consequently, they may arrive in a pointer state completely different from the one at the moment of their creation at the source ${ }^{1,2}$.

[^0]
Introduction

- Extragalactic neutrinos, produced in sources like GRBs, AGNs, SN explosions, etc, may experience flavor-oscillations and decoherence as they travel towards the Earth. Consequently, they may arrive in a pointer state completely different from the one at the moment of their creation at the source ${ }^{1,2}$.
- The oscillation pattern and the pointer state reached due to decoherence depend on the characteristics of the Dark Matter (DM) that is situated between the source and the Earth, and with the kind of interaction that takes place with the incoming neutrinos.

[^1]
Introduction

- Extragalactic neutrinos, produced in sources like GRBs, AGNs, SN explosions, etc, may experience flavor-oscillations and decoherence as they travel towards the Earth. Consequently, they may arrive in a pointer state completely different from the one at the moment of their creation at the source ${ }^{1,2}$.
- The oscillation pattern and the pointer state reached due to decoherence depend on the characteristics of the Dark Matter (DM) that is situated between the source and the Earth, and with the kind of interaction that takes place with the incoming neutrinos.
- From his perspective, neutrinos may be regarded as 'DM tracers'.

[^2]
Introduction

Procedure:

- Construction of the flavor states from the neutrino-mixing matrix in vacuum, starting from the eigenstates of the mass Hamiltonian H_{m}

[^3]
Introduction

Procedure:

- Construction of the flavor states from the neutrino-mixing matrix in vacuum, starting from the eigenstates of the mass Hamiltonian H_{m}
- Inclusion of local interactions with DM and subsequent analysis of the resulting oscillations (MSW effect) ${ }^{3,4}$

[^4]
Introduction

Procedure:

- Construction of the flavor states from the neutrino-mixing matrix in vacuum, starting from the eigenstates of the mass Hamiltonian H_{m}
- Inclusion of local interactions with DM and subsequent analysis of the resulting oscillations (MSW effect) ${ }^{3,4}$
- Follow-up of the time-evolution of the neutrino flavor-states and identification of the pointer states.

[^5]
Neutrino oscillations

Oscillations in vacuum

Neutrinos come in three flavors: ν_{e}, ν_{μ} and ν_{τ}. Each flavor is a linear combination of the three mass eigenstates $\left|m_{i}\right\rangle, i=1,2,3$.

$$
\begin{equation*}
\left|\nu_{\alpha}\right\rangle=\sum_{i} U_{\alpha i}\left|m_{i}\right\rangle \tag{1}
\end{equation*}
$$

where U is the mixing matrix ${ }^{5}$

$$
U=\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right]
$$

[^6]
Neutrino oscillations

Oscillations in vacuum

The Hamiltonian in the mass eigenbasis is

$$
H_{m}=\left[\begin{array}{ccc}
m_{1} & 0 & 0 \tag{2}\\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right]
$$

and it has a diagonal form. To transform to the flavor basis (non-diagonal) we use

$$
\begin{equation*}
H_{f}=U H_{m} U^{\dagger} . \tag{3}
\end{equation*}
$$

Neutrino oscillations

Interaction potential of neutrinos with DM

$$
\begin{equation*}
V=\lambda G_{F} \frac{\rho(r)}{m_{D M}} \Lambda \tag{4}
\end{equation*}
$$

- λ : dimensionless scale parameter

Neutrino oscillations

Interaction potential of neutrinos with DM

$$
\begin{equation*}
V=\lambda G_{F} \frac{\rho(r)}{m_{D M}} \Lambda \tag{4}
\end{equation*}
$$

- λ : dimensionless scale parameter
- $G_{F}=8.963 \times 10^{-44} \mathrm{MeV} \mathrm{cm}^{3}$

Neutrino oscillations

Interaction potential of neutrinos with DM

$$
\begin{equation*}
V=\lambda G_{F} \frac{\rho(r)}{m_{D M}} \Lambda \tag{4}
\end{equation*}
$$

- λ : dimensionless scale parameter
- $G_{F}=8.963 \times 10^{-44} \mathrm{MeV} \mathrm{cm}^{3}$
- $\rho(r)$: DM density distribution

Neutrino oscillations

Interaction potential of neutrinos with DM

$$
\begin{equation*}
V=\lambda G_{F} \frac{\rho(r)}{m_{D M}} \Lambda \tag{4}
\end{equation*}
$$

- λ : dimensionless scale parameter
- $G_{F}=8.963 \times 10^{-44} \mathrm{MeV} \mathrm{cm}^{3}$
- $\rho(r)$: DM density distribution
- $m_{D M}$: DM mass (in units of energy)

Neutrino oscillations

Interaction potential of neutrinos with DM

$$
\begin{equation*}
V=\lambda G_{F} \frac{\rho(r)}{m_{D M}} \Lambda \tag{4}
\end{equation*}
$$

- λ : dimensionless scale parameter
- $G_{F}=8.963 \times 10^{-44} \mathrm{MeV} \mathrm{cm}^{3}$
- $\rho(r)$: DM density distribution
- $m_{D M}$: DM mass (in units of energy)
- $1: 3 \times 3$ matrix.

Neutrino oscillations
DM density distribution

Isotropic

$$
\begin{equation*}
\rho_{\mathrm{iso}}(r)=\rho_{\oplus}\left(\frac{1+\left(r_{\oplus} / r_{s}\right)^{2}}{1+\left(r / r_{s}\right)^{2}}\right), \quad r_{s}=5 \mathrm{kpc} \tag{5}
\end{equation*}
$$

Navarro-Frenk-White (NFW) ${ }^{\text {a }}$

Navarro, J. F., Frenk, C. S., \& White, S. D. M. 1997, ApJ, 490, 493

$$
\begin{equation*}
\rho_{\mathrm{NFW}}(r)=\rho_{\oplus}\left(\frac{r_{\oplus}}{r}\right)\left(\frac{1+\left(r_{\oplus} / r_{s}\right)}{1+\left(r / r_{s}\right)}\right)^{2}, \quad r_{s}=20 \mathrm{kpc} \tag{6}
\end{equation*}
$$

Constant

$$
\begin{equation*}
\rho_{\text {Const }}(r)=\rho_{\oplus} \tag{7}
\end{equation*}
$$

- $\rho_{\oplus}=0.4 \mathrm{GeV} \mathrm{cm}^{-3}, r_{\oplus}=8.5 \mathrm{kpc}$

Neutrino oscillations

Neutrino oscillations

Distances

- $\overrightarrow{r_{\oplus}}=$ distance from the Solar System (SS) to the Galactic Center (GC)

$$
|r|=\sqrt{r_{\oplus}^{2}+I^{2}-2 \mid r_{\oplus} \cos \phi}
$$

If the source is located at a distance $L_{\text {max }}$ from the solar system, then $I=L_{\text {max }}-c t$.

Neutrino oscillations

Distances

- $\overrightarrow{r_{\oplus}}=$ distance from the Solar System (SS) to the Galactic Center (GC)
- $\vec{l}=$ distance from the SS to the Source

$$
|r|=\sqrt{r_{\oplus}^{2}+r^{2}-2 / r_{\oplus} \cos \phi}
$$

If the source is located at a distance $L_{\text {max }}$ from the solar system, then $I=L_{\text {max }}-c t$.

Neutrino oscillations

Distances

- $\overrightarrow{r_{\oplus}}=$ distance from the Solar System (SS) to the Galactic Center (GC)
- $\vec{l}=$ distance from the SS to the Source
- $\vec{r}=$ distance from the GC to the Source

$$
|r|=\sqrt{r_{\oplus}^{2}+r^{2}-2 / r_{\oplus} \cos \phi}
$$

If the source is located at a distance $L_{\text {max }}$ from the solar system, then $I=L_{\text {max }}-c t$.

Neutrino oscillations

Distances

- $\overrightarrow{r_{\oplus}}=$ distance from the Solar System (SS) to the Galactic Center (GC)
- $\vec{l}=$ distance from the SS to the Source
- \vec{r} = distance from the GC to the Source
- $\phi=$ angle between $\overrightarrow{r_{\oplus}}$ and \vec{l}

$$
|r|=\sqrt{r_{\oplus}^{2}+r^{2}-2 l r_{\oplus} \cos \phi}
$$

If the source is located at a distance $L_{\text {max }}$ from the solar system, then $I=L_{\text {max }}-c t$.

Neutrino oscillations in vacuum

Neutrino flavor-states (eigenstates of H_{f}) evolve with time according to

$$
\begin{equation*}
\left|\nu_{\alpha}(t)\right\rangle=\sum_{k} U_{\alpha k}(t) e^{-i E_{i} t / \hbar}\left|m_{k}\right\rangle \tag{8}
\end{equation*}
$$

where $E_{i}=\sqrt{p^{2} c^{2}+m_{i}^{2} c^{4}}=p c\left(1+\frac{m_{i}^{2} c^{4}}{p^{2} c^{2}}\right)^{1 / 2} \approx p c+\frac{m_{i}^{2} c^{4}}{2 E}$ is the
channel energy and E is the energy of the flavor state. If
$\delta_{k}^{2}(t) \equiv \frac{m_{k}^{2} c^{4} t}{2 E \hbar}$, we have

$$
\begin{equation*}
\left|\nu_{\alpha}(t)\right\rangle=e^{-i p c t / \hbar} e^{-i \delta_{1}^{2}(t)} \sum_{k} U_{\alpha k} e^{-i\left(\delta_{k}^{2}(t)-\delta_{1}^{2}(t)\right)}\left|m_{k}\right\rangle \tag{9}
\end{equation*}
$$

Neutrino oscillations in vacuum

Transition and survival amplitudes and probabilities between times 0 and t

Transition from flavor α at $t=0$ to flavor β at time $t(\alpha, \beta=\mathbf{e}, \mu, \tau)$

Transition $(\alpha \neq \beta) /$ survival $(\alpha=\beta)$ amplitudes

$$
\begin{equation*}
A_{\alpha \beta}(t)=\left\langle\nu_{\beta}(t) \mid \nu_{\alpha}(0)\right\rangle=e^{i \delta_{1}^{2}(t)} \sum_{k} U_{\alpha k} U_{\beta k}^{*} e^{i\left(\delta_{k}^{2}(t)-\delta_{1}^{2}(t)\right)} . \tag{10}
\end{equation*}
$$

Transition $(\alpha \neq \beta)$ / survival $(\alpha=\beta)$ probabilities

$$
\begin{aligned}
P_{\alpha \beta}(t) & =\left|A_{\alpha \beta}(t)\right|^{2}=\left(\operatorname{Re} A_{\alpha \beta}(\mathrm{t})\right)^{2}+\left(\operatorname{Im~} \mathrm{A}_{\alpha \beta}(\mathrm{t})\right)^{2} \\
& =\sum_{k k^{\prime}} U_{\alpha k} \cup_{\beta k}^{*} \cup_{\alpha k^{\prime}}^{*} \cup_{\beta k^{\prime}} \cos \left(\delta_{\mathrm{k}}^{2}(\mathrm{t})-\delta_{\mathrm{k}^{\prime}}^{2}(\mathrm{t})\right)
\end{aligned}
$$

Neutrino oscillations in a DM environment

We obtain the flavor-transition probabilities by diagonalizing the new Hamiltonian ${ }^{6}$

$$
\begin{equation*}
H=H_{f}+V(I, \phi) . \tag{12}
\end{equation*}
$$

For $E \gg m_{i} c^{2}$ we write the mass Hamiltonian in the form

$$
H_{m}=\frac{1}{2 E_{\nu}}\left[\begin{array}{ccc}
0 & 0 & 0 \tag{13}\\
0 & \Delta m_{12}^{2} & 0 \\
0 & 0 & \Delta m_{13}^{2}
\end{array}\right],
$$

where $\Delta m_{1 j}^{2}=\left(m_{j}^{2}-m_{1}^{2}\right) c^{4}$ are squared mass differences and E_{ν} is the neutrino energy.

[^7]Neutrino oscillations in a DM environment
Iterative procedure

- A neutrino is created at the source in the electron flavor, ν_{e}. $H\left(t_{0}\right)=H_{f}+V\left(L_{\text {max }}, \phi\right)$

Neutrino oscillations in a DM environment
Iterative procedure

- A neutrino is created at the source in the electron flavor, ν_{e}. $H\left(t_{0}\right)=H_{f}+V\left(L_{\text {max }}, \phi\right)$
- Diagonalize and transform back to the mass basis: $H_{m}^{\prime}=W H\left(t_{0}\right) W^{-1} \neq H_{m}$

Neutrino oscillations in a DM environment
Iterative procedure

- A neutrino is created at the source in the electron flavor, ν_{e}. $H\left(t_{0}\right)=H_{f}+V\left(L_{\text {max }}, \phi\right)$
- Diagonalize and transform back to the mass basis: $H_{m}^{\prime}=W H\left(t_{0}\right) W^{-1} \neq H_{m}$
- At time $\Delta t=\Delta I / c$, the new Hamiltonian becomes $H\left(t_{0}+\Delta t\right)=H\left(t_{0}\right)+V\left(L_{\text {max }}-\Delta I, \phi\right)$.

Neutrino oscillations in a DM environment

- A neutrino is created at the source in the electron flavor, ν_{e}. $H\left(t_{0}\right)=H_{f}+V\left(L_{\text {max }}, \phi\right)$
- Diagonalize and transform back to the mass basis:
$H_{m}^{\prime}=W H\left(t_{0}\right) W^{-1} \neq H_{m}$
- At time $\Delta t=\Delta I / c$, the new Hamiltonian becomes $H\left(t_{0}+\Delta t\right)=H\left(t_{0}\right)+V\left(L_{\text {max }}-\Delta I, \phi\right)$.
- By applying this procedure recursively we will obtain a Hamiltonian at Earth that will keep memory of the distribution of DM along the neutrino path, and an oscillation pattern that is entirely dependent on the value of the effective potential at each point along the trajectory.

Results

We calculated the survival $\left(\nu_{e} \rightarrow \nu_{e}\right)$ and disappearance $\left(\nu_{e} \rightarrow \nu_{\mu(\tau)}\right)$ probabilities under the following assumptions:

- $L_{\text {max }}=20 \mathrm{kpc}$
- Distance between the Earth and the Sun ($\left.\approx 4.86 \times 10^{-9} \mathrm{kpc}\right)$ negligible as compared with r_{\oplus}
- Emission of $E_{\nu}=1 \mathrm{TeV}$ electron-neutrinos from the source at $t=0$
- $\phi=0$
- Normal-Hierarchy (NH) for the initial mass-eigenstates

Results

Probabilities in vacuum

Results

Oscillations in a DM environment

Unknown parameters:

- mass of the DM particles, $m_{D M}$
- DM density profile $\rho(r)$
- Texture of the matrix \wedge
- Value of the dimensionless parameter λ which renormalises the Fermi constant.

Results

Oscillations in a DM environment

Cases a), b), c): $m_{D M}=1 \mathrm{eV}, \lambda=10^{15}, \rho(r)=\rho_{\oplus}$,
$\Lambda_{(a, b, c)}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$, and $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
Cases d), e), f): $m_{D M}=1 \mathrm{eV}, \lambda=10^{15}, \rho_{\mathrm{NFW}}(r)$,
$\Lambda_{(d, e, f)}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$, and $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
Cases g), h), i): $m_{D M}=1 \mathrm{eV}, \lambda=10^{15}, \rho_{\text {iso }}(r)$,
$\Lambda_{(g, h, i)}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, and $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$.

Results

Oscillations in a DM environment

Discussion

- $\Lambda_{(a)}$ introduces a dependence of the mass eigenstates upon the DM properties, opening the possibility for a MSW effect.
- $\wedge_{(b)}$ may partially suppress components of the neutrino density matrix of a given flavor
- $\Lambda_{(c)}$ activates all channels of the interaction.

For $\Lambda_{(a)}$ there are no noticeable effects on the oscillation pattern with respect to the case in vacuum. Instead, we notice a difference in the oscillation pattern in the cases of $\Lambda_{(b)}$ and $\Lambda_{(c)}$.

Discussion

- For the NFW DM distribution the effect of the interaction is negligible at the source but it gains importance as the neutrino travels to the detector. the local dependence of ρ_{NFW} induces huge effects when the neutrinos cross the GC at $r=0$ around the time $t \sim 1.18 \times 10^{12} \mathrm{~s}$.
- The non-diagonal structure of the matrix \wedge for cases (d) and (f) produces a noticeable effect transforming the density matrix of the electron-neutrino from pure to mixed, thus resulting in decoherence.
- $\Lambda_{(e)}$ consists of diagonal elements, so the oscillation pattern is dominated by the MSW effect.

Discussion

- $\Lambda_{(g)}$ has only non-diagonal terms, so decoherence dominates over oscillations.
- $\Lambda_{(h)}$ mixed elements. This leads to a combined effect: oscillations are present with a very high frequency, but globally the three states tend to a pointer state.
- In case (i) the interaction is repulsive, leading to the suppression of the oscillations and the appearance of marked pointer states.

Discussion

Dependence on the angle ϕ

For $\phi>$ a few cents of a degree, the neutrino path does not cross the GC, which is the zone where $\rho(r)$ reaches its maximum value ${ }^{7}$.

$\phi=5^{\circ}$

$\phi=10^{\circ}$
${ }^{7}$ The other parameters are the same as in Figure (e).

Discussion

Dependence on $m_{D M}$ and $\rho(r)$,

Comparison between vacuum and matter

A few words about right-handed neutrinos

- Since light neutrinos have a mass, then right-handed neutrinos should be present in the electroweak Lagrangian, at the same level of the left-handed neutrinos.
- From the point of view of the SM Lagrangian to the mass term one should add left-right and right-right interactions mediated by heavier (right-handed) massive bosons.
- The masses of the right-handed bosons, as well as that of the right-handed neutrinos, could be determined either by direct measurements (LHC), or indirect ones (neutrinoless double beta decay).

The propagator

$$
\begin{aligned}
& h_{K}\left(r_{m n}, E_{k}\right)=\frac{2}{\pi} R_{\mathrm{A}} \int d q \frac{q h_{K}\left(q^{2}\right)}{q+E_{k}-\left(E_{\mathrm{i}}+E_{\mathrm{f}}\right) / 2} j_{0}\left(q r_{m n}\right) \\
& m_{k}^{(0 \nu)}=\sum_{J \pi, k_{1}, k_{2}, \nu^{\prime}} \sum_{p p^{\prime} \prime n^{\prime}}(-1)^{j n+j_{p^{\prime}}+J+J^{\prime}} \sqrt{2 J^{\prime}+1} \times\left\{\begin{array}{lll}
j_{p} & i_{n} & j^{\prime} \\
i_{n^{\prime}} & i_{p^{\prime}} & J^{\prime}
\end{array}\right\} \\
& \left(p p^{\prime}: J^{\prime}\left\|\mathcal{O}_{K}\right\| n n^{\prime}: J^{\prime}\right) \times\left(0_{f}^{+}\left\|\left[c_{p^{\prime}}^{\dagger}, \tilde{c}_{n^{\prime}}\right],\right\| J_{k_{1}}^{\pi}\right)\left\langle J_{k_{1}}^{\pi} \mid J_{k_{2}}^{\pi}\right\rangle\left(J_{k_{2}}^{\pi}\left\|\left[c_{p}^{\dagger} \tilde{c}_{n}\right]_{J}\right\| 0_{i}^{+}\right) \\
& \mathcal{O}_{\mathrm{F}}=h_{\mathrm{F}}\left(r, E_{k}\right), \quad \mathcal{O}_{\mathrm{GT}}=h_{\mathrm{GT}}\left(r, E_{k}\right) \sigma_{1} \cdot \sigma_{2}, \quad r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|,
\end{aligned}
$$

Comments: transitions between structureless nucleons, momentum cut-off dependent, renormalization effects upon g_{A}

RL currents from LHC

$$
\begin{gathered}
h_{\mathrm{W}}=\frac{G}{\sqrt{2}} \cos \theta_{\mathrm{CKM}}\left(j_{\mathrm{L}} J_{\mathrm{L}}^{\dagger}+\eta j_{\mathrm{R}} J_{\mathrm{L}}^{\dagger}+\lambda j_{\mathrm{R}} J_{\mathrm{R}}^{\dagger}\right)+\text { h.c. } \\
\mathrm{W}_{\mathrm{L}}=\mathrm{W}_{1} \cos \zeta-\mathrm{W}_{2} \sin \zeta \\
\mathrm{~W}_{\mathrm{R}}=\mathrm{W}_{1} \sin \zeta+\mathrm{W}_{2} \cos \zeta \\
{\left[T_{1 / 2}^{(0 \nu)}\right]^{-1}=C_{m m}^{(0 \nu)}\left(\frac{\left\langle m_{\nu}\right\rangle}{m_{\mathrm{e}}}\right)^{2}+C_{m \lambda}^{(0 \nu)}\langle\lambda\rangle\left(\frac{\left\langle m_{\nu}\right\rangle}{m_{\mathrm{e}}}\right)} \\
+C_{m \eta}^{(0 \nu)}\langle\eta\rangle\left(\frac{\left\langle m_{\nu}\right\rangle}{m_{\mathrm{e}}}\right)+C_{\lambda \lambda}^{(0 \nu)}\langle\lambda\rangle^{2} \\
+C_{\eta \eta}^{(0 \nu)}\langle\eta\rangle^{2}+C_{\lambda \eta}^{(0 \nu)}\langle\eta\rangle\langle\lambda\rangle
\end{gathered}
$$

Diagrams

Neutrinoless double beta decay with LL, LR and RR interactions

Dependence on the neutrino mass

Mass of the right-handed boson

Some remarks

- Our results show that a mass M_{R} of the order of 3 TeV , for the right handed boson, and a mixing angle ζ of the order of 10^{-3}, are compatible with the measured $0 \nu \beta \beta$ half-life limits and with the extracted upper limit of the average neutrino mass. These values may be ultimately explored at large by the three $0 \nu \beta \beta$ experiments, in conjunction with the ATLAS and CMS measurements.

Conclusions

- In this work we have explored the effects of the interactions of neutrinos emitted from a distant source with a background of DM.
- ν-flavor survival (disappearance) probabilities are sensitive to the parameters associated with the ν-DM interactions, either showing signals of the occurrence of the MSW effect or letting the ν-flavor states evolve to pointer states due to the onset of decoherence.
- We conclude that changes in the flavor composition of neutrinos emitted in distant sources can be attributed to the presence of DM, once the emission mechanism is fixed.

Conclusions

Thank you for your attention!

[^0]: ${ }^{1}$ A. V. Penacchioni and O. Civitarese, ApJ 872 (2019) 73
 ${ }^{2}$ A. V. Penacchioni and O. Civitarese, ApJL 871 (2019) L30

[^1]: ${ }^{1}$ A. V. Penacchioni and O. Civitarese, ApJ 872 (2019) 73
 ${ }^{2}$ A. V. Penacchioni and O. Civitarese, ApJL 871 (2019) L30

[^2]: ${ }^{1}$ A. V. Penacchioni and O. Civitarese, ApJ 872 (2019) 73
 ${ }^{2}$ A. V. Penacchioni and O. Civitarese, ApJL 871 (2019) L30

[^3]: ${ }^{3}$ Smirnov, A. Y. 2005, Physica Scripta Volume T, 121, 57
 ${ }^{4}$ Kersten, J. \& Smirnov, A. Y. 2016, European Physical Journal C, 76, 339

[^4]: ${ }^{3}$ Smirnov, A. Y. 2005, Physica Scripta Volume T, 121, 57
 ${ }^{4}$ Kersten, J. \& Smirnov, A. Y. 2016, European Physical Journal C, 76, 339

[^5]: ${ }^{3}$ Smirnov, A. Y. 2005, Physica Scripta Volume T, 121, 57
 ${ }^{4}$ Kersten, J. \& Smirnov, A. Y. 2016, European Physical Journal C, 76, 339

[^6]: ${ }^{5}$ Bilenky, S. M. 2000, ArXiv High Energy Physics - Phenomenology e-prints

[^7]: ${ }^{6}$ de Salas, P. F., Lineros, R. A., \& Tórtola, M. 2016, Phys. Rev. D, 94, 123001

