Signatures of early structure formation at FIR/sub-mm wavelengths

María Emilia De Rossi

Instituto de Astronomía y Física del Espacio (CONICET-UBA), Argentina

&

Volker Bromm

Department of Astronomy, University of Texas at Austin, USA

DSU2019, Buenos Aires, Argentina, 2019
INTRODUCTION

First stars (Pop III) e.g. Bromm 2013

Reionization

First metals

Dust Formation

Strong negative feedback

Mini-halos (~10^6 M☉) at z>20

Atomic cooling halos (~10^7 – 10^8 M☉) at z~20-6 e.g. Bromm & Yoshida 2011

First long-lived stellar systems

First galaxies might have been composed of Pop II stellar systems, surrounded by mixed phase of gas and dust.
Interconnection FIR/sub-mm Radiation and First Galaxies

Primordial stellar populations

- Imprint on the NIR (peaking at $\lambda \sim 1\mu m$) (e.g. Bromm 2013).
- Widely studied in the literature.
- NIR-EBL excess suggests a significant contribution from early epochs (e.g. Kashlinksky 2005).

Dust emission

- UV radiation from primordial stars heated interstellar dust.
- Re-radiated dust emission contributes to the FIR/sub-mm part of the spectrum.
- Role of first galaxies as possible FIR/sub-mm sources poorly explored.

We ask to what extent the first galaxies may have contributed to the observed FIR/sub-mm radiation through redshifted dust emission.
Brief overview of dust model (De Rossi & Bromm 2017)

Model galaxy: *dark matter halo* hosting a central cluster of *Pop II stars*, surrounded by a mixed phase of *gas* and *dust*.

- **Different density profiles for the gas (e.g. isothermal power law).**
- **Spectral energy distribution associated to stars**: YGGDRASIL model grids (Zackrisson+2011).
- **Silicon-based dust models** (Cherchneff & Dwek 2010).
- **Grain-size distributions used in Ji et al. (2014)**: “standard” (Pollack+1994) and “shock” (Bianchi & Schneider 2007).
- **Dust temperature** (T_d) was determined assuming thermal equilibrium.
- **Dust emissivity** was estimated by applying the Kirchhoff’s law for the T_d profile.

Fiducial model: dust-to-metal mass ratio $D/M=5 \times 10^{-3}$, gas metallicity of $Z_g=5 \times 10^{-3} Z_\odot$ and a star formation efficiency of $\eta = 0.01$.
Dust emission from a model source at z=10

Peaks at $\lambda \sim 50\,\mu m$ or $\lambda_{\text{obs}} \sim 500\,\mu m$.

Point source sensitivities of current instruments not sufficient to allow detection.

Rare massive systems ($M_{\text{vir}} > 10^{14} M_\odot$, $L_\odot > 10^{12} L_\odot$) detectable but statistically difficult to find.

An increase of D/M, Z_g or η and the use of the shock SD would increase dust emission.

De Rossi & Bromm (2017)
Dust emission from a model source with $M_{\text{vir}} = 10^{10} M_\odot$

- Larger L_ν at higher z
- High-z systems, more concentrated.
- Higher temperature floor set by the CMB.
- Increase in dust temperature.
- Enhancement of heating efficiency associated with stellar radiation.
- FIR/sub-mm sources at $z > 7$ experience a strong negative K-correction.
- Observations in the FIR also sensitive to spectral features.

De Rossi & Bromm (2019)
Contrary to expectations, systems with similar masses brighter at higher z.

Strong negative K-correction

Characteristic sensitivity values covering the scope of future FIR surveys.

$M_{\text{min}} \sim 10^{11} - 10^{12} M_{\odot}$ ($M_{\text{min}} \sim 10^{13} - 10^{14} M_{\odot}$) required to reach sensitivity limits of $S \sim 0.1 \mu$Jy ($S \sim 10.0 \mu$Jy), with the exact value depending on dust properties.

$M_{\text{vir}} > M_{\text{min}}$ far from typical, highly biased overdensities.

Detection difficult with blind surveys.
The Redshift Horizon

For a given sky area ($\Delta \Omega$), z_{\lim} is defined as the highest z above which the projected number of sources above the sensitivity limit is $N \leq 1$.

At $z_{\lim} > 12$:

$$z_{\lim} = -4 \log_{10}(S/nJy) + z_{\lim}(S = 1 \text{ nJy})$$

De Rossi & Bromm (2019)
The Redshift Horizon

For a given sky area ($\Delta\Omega$), z_{lim} is defined as the highest z above which the projected number of sources above the sensitivity limit is $N \leq 1$.

At $z_{\text{lim}} > 12$:

$$z_{\text{lim}} = -4 \log_{10}(S/nJy) + z_{\text{lim}}(S = 1 \text{ nJy})$$

Probability of detecting typical first galaxies in blind surveys (FIR/sub-mm): very challenging, given the extreme sensitivities required.
The Redshift Horizon

For a given sky area ($\Delta \Omega$), z_{lim} is defined as the highest z above which the projected number of sources above the sensitivity limit is $N \leq 1$.

Probability of detecting one individual source: dependence on instrument sensitivity and survey area.

De Rossi & Bromm (2019)
The Redshift Horizon

For a given sky area ($\Delta \Omega$), z_{\lim} is defined as the highest z above which the projected number of sources above the sensitivity limit is $N \leq 1$.

Nature of primordial galaxies still uncertain. Observational prospects increase significantly with star formation efficiency, metallicity and dust-to-metal ratio.

Probability of detecting one individual source: dependence on instrument sensitivity and survey area.
An increase by one order of magnitude of Z_g, η or D/M, relaxes the sensitivity limit for detection to similar order of magnitude.

Similar trends obtained if adopting survey areas of 0.1 and 10 deg2.

Reference parameters

- **Dust-to-metal mass ratio** $D/M=5 \times 10^{-3}$
- **Gas metallicity** $Z_g=5 \times 10^{-3}Z_\odot$
- **Star formation efficiency** $\eta = 0.01$

De Rossi & Bromm (2019)
Cosmic FIR Background

Peak: \(\sim 500 \mu \text{m} \)

Maximum intensities: \(\sim 10^{-4} \) and \(\sim 10^{-3} \) nW m\(^{-2}\) sr\(^{-1}\) for the standard and shock SD, resp.

Below the measured background by \(\sim 3-4 \) orders of magnitude.

Below average source-subtracted EBL by \(\sim 2-3 \) orders of magnitude.

Dust chemical composition does not significantly affect the main trends.

\[
I_{\nu}(\nu_{\text{obs}}) = \frac{c}{4\pi} \int_{z_{\text{min}}}^{z_{\text{max}}} \epsilon_{\nu}(\nu, z) \left| \frac{dt}{dz} \right| \, dz.
\]

\(\epsilon_{\nu} \): specific luminosity per comoving volume

\(\rightarrow \) Sheth-Tormen MF + dust luminosities predicted by our model.

De Rossi & Bromm (2017)
Impact of model parameters

Radiation intensity increases with D/M. For extreme D/M, ~1% of measured flux and ~100% of SS EBL.

SS EBL only reached if extremely high values are assumed for model parameters.

Radiation intensity increases with η. For extreme η, model EBL reaches the averaged observed EBL excess.

D/M and Z_g are degenerate parameters.

- **Standard parameters**
 - Dust-to-metal mass ratio $D/M = 5 \times 10^{-3}$
 - Gas metallicity $Z_g = 5 \times 10^{-3} Z_\odot$
 - Star formation efficiency $\eta = 0.01$

De Rossi & Bromm (2017)
CONCLUSIONS

- We analysed the FIR/sub-mm signatures of first galaxies by implementing an analytical model for dust emission.

- Sources at z>7 experience a strong negative K-correction.

- Dust emission from dwarf galaxies at z~10 would peak at ~500μm, with observed fluxes below the capabilities of current observatories.

- For survey areas of 0.1 deg² and 10 deg², the redshift horizon would be above z ~ 7 for sensitivities <0.1 – 0.5 μJy and <0.5 – 3.0 μJy, respectively, with the exact values depending on the nature of dust.

- The FIR/sub-mm EBL peaks at ~500μm and it would not represent a significant percentage of the total observed EBL.

- Because the FIR/sub-mm radiation shows a strong dependence on D/M, Z_g and η, its study could help to constrain these quantities at early times.
Contribution of the first galaxies to the cosmic far-infrared/sub-millimeter background – I. Mean background level

María Emilia De Rossi1,2,* and Volker Bromm3

1Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
2Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires, Argentina
3Department of Astronomy, University of Texas at Austin, 2511 Speedway, Austin, TX 78712, USA

Accepted 2016 November 15. Received 2016 November 13; in original form 2016 April 11

De Rossi & Bromm (2017)

ArXiv: 1903.02512

Redshift Horizon for Detecting the First Galaxies in Far-Infrared Surveys

MARÍA EMILIA DE ROSSI1,2 AND VOLKER BROMM3

1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales y Ciclo Básico Común, Buenos Aires, Argentina
2CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires, Argentina
3Department of Astronomy, University of Texas at Austin, 2511 Speedway, Austin, TX 78712, USA

(Received M D, 2019; Revised M D, 2019; Accepted M D, 2019)

Submitted to ApJ
¡MUCHAS GRACIAS!