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Motivation

In 1998 two independent research teams (Supernova Cosmology
Project and High-Z SN search) reported strong evidence that the late
universe expansion is accelerating.

Data from the Cosmic Microwave Background and Large Scale
Structure confirm the late-time acceleration of the universe.

This resulted in a modification of the standard cosmological model:
The ΛCDM model where a constant is added to Einstein’s equation.
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Alternative models to explain the late-time

acceleration of the universe:

Rµν −
1

2
Rgµν = 4πGTµν

Scalar Fields minimally coupled to matter and gravity
◮ quintessence
◮ k-essence

Scalar Fields with non-minimal coupling to matter:
◮ dilatons, symmetrons: coupling to matter depends on the environment
◮ chameleons: thin shell effect; coupling to matter depends on the mass

m(φ).
◮ galileons, beyond Horndesky: Vainstein Mechanism

Alternative theories of gravity: f(R), massive gravity
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Observational constraints on the PPN

parameter in the Solar System

A static spherically symmetric metric can be written as:

ds2 = −[1− 2Φ(r)]dt2 + [1 + 2Ψ(r)]dr2 + r2dΩ2 .
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and the corresponding posnewtonian
parameter (PPN) γ can be expressed as:

γ(r) =
Ψ(r)

Φ(r)

Landau et al. (IFIBA) f(R) gravity in the solar system DSU 15-19 July 2019 5 / 19



Solar Sistem Tests: Time delay of light

A radar signal sent across the solar system past the Sun to a planet or
satellite and returned to the Earth suffers an additional non-Newtonian
delay in its round-trip travel time:

δt = 2(1 + γ)M⊙ ln

(

(r⊕ + x⊕ · n)(re − xe · n)
d2

)

,

where xe (x⊕) are the vectors, and re (r⊕) are the distances from the
Sun to the source (Earth), respectively.
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Basics of f(R) theories

The action in f(R) gravity can be expressed:

S =
1

2κ2

∫

d4x
√−g f(R) +

∫

d4xLM (gµν ,ΨM ) ,

where κ2 = 8πG, g is the determinant of the metric gµν , and LM is a
matter Lagrangian. The Ricci scalar R is defined by R = gµνRµν .
The field equation can be derived by varying the action with respect to
gµν :

fR(R)Rµν(g)−
1

2
f(R)gµν −∇µ∇νfR(R) + gµν�fR(R) = κ2T (M)

µν

where fR(R) ≡ ∂f/∂R. T
(M)
µν is the energy-momentum tensor of the

matter fields defined by the variational derivative of LM in terms of gµν :

T (M)
µν = − 2√−g

δLM

δgµν
.
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We assume a static spherical symetrical space-time:

ds2 = −[1− 2Φ(r)]dt2 + [1 + 2Ψ(r)]dr2 + r2
(

dθ2 + sin2 θdϕ2
)

,

The equations for the metric perturbation Φ(r) and Ψ(r):

Ψ′ =
1 + 2Ψ

r(2fR + rR′fRR)

{

4fRΨ− 2(1 + 2Ψ)r2κT t
t

+
(1 + 2Ψ)r2

3
(RfR + f + 2κT ) +

rR′fRR

fR

[(1 + 2Ψ)r2

3
(2RfR − f + κT )

−κ(1 + 2Ψ)r2(T t
t + T r

r) + 4ΨfR + 2rR′fRR

]

}

Φ′ =
1− 2Φ

r(2fR + rR′fRR)

[

(1 + 2Ψ)r2(f −RfR + 2κT r
r)

+4fRΨ− 4rR′fRR

]

,

where fRR = ∂2f/∂R2.
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Equation for R(r)

In a Minkowsky background:

R′′ +
2R′

r
=

1

3fRR

(

κT + 2f −RfR − 3fRRRR
′2
)

,

Previous analyses rely in :

Defining a new scalar field χ = fR:

χ′′ +
2χ′

r
=

1

3

(

κT + 2f −Rχ
)

=
dVeff

dR

where R and f(R) are implicit functions of χ.
.

Defining a new chameleon like scalar field ϕ, where
χ = exp[−ϕ/(

√
6Mp)] and a conformal Einstein frame metric.
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The solution for the chameleon field

The solution of the chameleon field for one body is a step function,
where the value of the field is equal to the minimum of the potential
in each medium.

ϕ(
r)

r

Body border
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Our approach

We consider the following model for the Sun:

ρ(r) =































ρ⊙ = 1.43 g cm−3 (0 ≤ r ≤ R⊙)

ρcor = 10−15 g cm−3 (R⊙ ≤ r ≤ Rcor)

ρIM = 10−24 g cm−3 (Rcor ≤ r ≤ RIM )

with RIM ∼ 150A.U. and Rcor = 15R⊙.
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Our approach for solving the equation for

R(r)

Neglecting the term with R′2:

R′′ +
2R′

r
=

dVeff

dR
=

κT + 2f −RfR
3fRR

We will aproximate the r.h.s of the last equation, around the mininum of
the effective potential in each region as follows:

R′′

I +
2R′

I

r
≈ m2

eff,I(RI −RI
min) ,

where the index I stands for “in”, “cor” and “out”, and

m2
eff = κT+2f−R2fRR

3RfRR
|Rmin .
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Our approach for solving the equation for

R(r)

Accordingly, we propose the following solution:

R(r) =































Rin(r) = Rin
min + R̃in(r) (0 ≤ r ≤ R⊙)

Rcor(r) = Rcor
min + R̃cor(r) (R⊙ ≤ r ≤ Rcor)

RIM(r) = RIM
min + R̃IM(r) (Rcor ≤ r ≤ RIM )

where we assume R̃in(r) ≪ Rin
min, R̃IM(r) ≪ RIM

min, and R̃cor(r) ≪ Rcor
min.

To obtain the posnewtonian parameter γ we must:

Insert the analytical solution of R(r) in the equations of the metric
perturbations Φ(r) and Ψ(r) .

Linearize the equations for the metric perturbations and solve them.
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R(r) for the Starobinsky model

Starobinsky JETP Lett. 86,157 (2007)

f(R) = R+ λRs

[

(

1 +
R2

R2
s

)−q

− 1

]

We fix Rs = 4.17H2
0 and λ = 1.
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Figure: Left: q = 2 Right: q = 0.4. The red dotted line and the green dashed
line indicate the values Rcor

min
and RIM

min
, respectively.
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γ(r) for the Starobinsky model
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Figure: Deviation parameter |γ − 1| as a function of r (in units of R⊙)
computed from the Starobinsky model. Left: q = 2 Right: q = 0.4. The
constraint from the Cassini mission is shown as a horizontal dotted red line.
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R(r) and γ(r) for the Miranda model

Miranda et al. PRL 102, 221101 (2009)

f(R) = R− αRm ln

(

1 +
R

Rm

)

,

with Rm = H2
0 and α = 2.0.
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Figure: Left: R(r) for the Miranda Model Right: Deviation parameter |γ − 1| as
a function of r (in units of R⊙). The constraint from the Cassini mission is
shown as a horizontal dotted red line.

Landau et al. (IFIBA) f(R) gravity in the solar system DSU 15-19 July 2019 16 / 19



Results for other models

We also tested:

The Hu-Sawicky model (Hu & Sawicky PRD 76, 66400 (2007)):

f(R) = R−m2 c1(R/m2)n

c2(R/m2)n + 1
,

We assume m2 = 0.24H2
0 , c1 = 1.25× 10−3, c2 = 6.56× 10−5.

The exponential model (Kerner et al PRD 77, 046009 (2009)):

f(R) = R− βR∗(1− e−R/R∗) ,

We assume R∗ = 2.5H2
0 and β = 2.0.

The behaviour of the exponential model and the Hu-Sawicky model
for n ≥ 4 is the same as that for the Starobinsky model for q ≥ 2.

The behaviour of the Hu-Sawicky model for n < 4 is the same as that
for the Starobinsky model for q < 2.
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Summary and conclusions

We proposed a new approach to obtain an expresssion for the PPN γ
for f(R) theories in the Solar System.

We applied this approach to several f(R) models and work in the
Jordan frame.

The Starobinksy model for q ≥ 2, the Hu-Sawicky model for n ≥ 4
and the exponential model are not ruled out by the Solar Systems
estimates of the PPN parameter γ.

The Starobinksy model for q < 2, the Hu-Sawicky model for n < 4
and the Miranda model predictions are not consistent with the bounds
obtained by the Casini mission and therefore must be ruled out.

Our results are coincident with previous results in the literature.
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Thank you !!!! Muchas gracias!!!
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