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The QCD Axion
The QCD Lagrangian contains a CP-violating term

→ violates T and P and thus CP
→ induces electric dipole moment     
      (EDM) of neutron

experimentally:
                          → 

Why is θ so small? → Strong CP problem
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The QCD Axion
The solution: make θ a dynamical parameter by introducing a scalar field by              
                            adding a new U(1)PQ symmetry (Peccei-Quinn) 

U(1)PQ spontaneously broken at 
high energy scale fa

θ minimum is degenerate
→ arbitrary value chosen

G. Raffelt
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potential gets tilted during
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QCD Axion Dark Matter 

Axions created in early universe through 
initial misalignment are good candidate 
for cold dark matter 
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QCD Axion Dark Matter 

Axions created in early universe through 
initial misalignment are good candidate 
for cold dark matter 

astrophysical bounds
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QCD Axion Dark Matter 

Axions created in early universe through 
initial misalignment are good candidate 
for cold dark matter 

too much dark matter* astrophysical bounds
*depends on the actual cosmology
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QCD Axion Dark Matter 

Axions created in early universe through 
initial misalignment are good candidate 
for cold dark matter 

too much dark matter* astrophysical bounds
*depends on the actual cosmology

axion 
dark matter 
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Axion Landscape
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How to Detect Axions
● axions are pseudo-scalar bosons (like pions) 

and have a 2-photon-coupling:

● their de Broglie wavelength is large (O(m))
→ we can treat them as classical wave
→ axions  appear as a source term in 
     Maxwell’s equations 

9
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How to Detect Axions

axion-induced electric field:

In an external B field Be the axion field a(t) 
sources an oscillating E field Ea

10
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Dielectric Haloscope

power emitted from single interface:

In an external B field Be the axion field a(t) 
sources an oscillating E field Ea

Ea is different in materials with different ε

At the surface, E|| must be continuous
  → emission of electromagnetic waves
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Dielectric Haloscope

power emitted from all interfaces:

● boost emitted power through
– coherent emission from 

multiple interfaces
– resonance effects

● power boost factor 
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Dielectric Haloscope
● |β|2 > 104 achievable with 

80 disks and ε = 24

● non-uniform disk spacing 
of ~ λ/2 can achieve 
“broadband” response

● precision required for 
disk spacing < 10 µm

JCAP 061 (2017); arXiv:1612.07057
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Boost Factor
frequency is tuned by adjusting 

disk spacings

area law:
   → broad-band scan for search
   → narrow-band to check signal candidates
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Proof of Principle Setup
Test setup at MPP Munich

● up to 20 disks (Ø = 20 cm, ε ≈ 9)
● reproducibility of positioning ~ µm
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to model calculations
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Proof of Principle Setup
Test setup at MPP Munich

● up to 20 disks (Ø = 20 cm, ε ≈ 9)
● reproducibility of positioning ~ µm
● compare reflectivity measurements 

to model calculations
● boost factor reproducible  within 

few MHz for 5 disks
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The MADMAX Collaboration
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MADMAX
MAgnetized Disk and Mirror Axion EXperiment

EPJ C 79, 186 (2019) madmax.mpp.mpg.de
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MADMAX Timeline
2017 – 2019

Design
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Magnet

● design and construction of magnet drives time scale of project
● peak field ~ 9 T, homogeneity < 20 %
● dimensions of bore: length ~ 1 m, diameter ~ 1.5 m

block design with NbTi superconductor

19
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Magnet

● design and construction of magnet drives time scale of project
● peak field ~ 9 T, homogeneity < 20 %
● dimensions of bore: length ~ 1 m, diameter ~ 1.5 m

block design with NbTi superconductor

FoM = B2A = 100 T2 m2

has never been done before!
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Disks
● requirements: high ε, low loss (tan δ)

→ candidate materials:
– LaAlO3 (ε ≈ 24, tan δ ≈ few 10-5)
– Sapphire (ε ≈ 9, tan δ ≈ 10-5)

● Ø = 1.25 m needed for 100 T2 m2 

→ tiling necessary

● characterisation of dielectric 
properties @ 4K, f = 10-15 GHz 
ongoing
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Booster Simulation Studies
Study achievable boost factor using different simulation methods to optimize design

● 3D effects (diffraction)
● coupling to antenna 

(beam shape)
● dielectric loss
● inaccuracies 

(positioning, surface 
roughness, thickness)

● effects due to tiling
● ...

→ ~30% loss
    (combined)

21

- idealized 1D model
- 3D model with 
   diffraction
- 3D power 
   coupled to antenna
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Booster Simulation Studies
Study achievable boost factor using different simulation methods to optimize design

● 3D effects (diffraction)
● coupling to antenna 

(beam shape)
● dielectric loss
● inaccuracies 

(positioning, surface 
roughness, thickness)

● effects due to tiling
● ...

→ ~30% loss
     (combined)

→ small for tan δ < 10-4

→ tilt < 0.1 mrad
    thickness ± 5 µm
    sourface roughness < 10 µm
    positioning < 10 µm

More on the methods: arXiv:1906.02677
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MADMAX Timeline
2017 – 2019

Design
2019 – 2022
Prototype

first steps:
● build an intermediate-scale 

prototype of booster to test 
mechanics, receiver, … 

● put it in an existing magnet
● do some physics
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Prototype Sensitivity - ALPs

MADMAX
Prototype

Axion-like Particle Search:
with less and smaller disks 
and lower B-field (~ 3T)
→ don’t reach QCD axion           
    sensitivity
but
explore new parameter 
space for ALPs
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Sensitivity – Hidden Photons

MADMAX
Prototype

Hidden photon search
hidden photon mixes with 
normal photon
→ conversion doesn’t 
    require magnetic field
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MADMAX Timeline
2017 – 2019

Design
2019 – 2022
Prototype

2022 – 2025
Construction

2025 – 2035
Data taking
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Experimental Site
planned to be built at DESY  in HERA Hall North
→ use existing cryogenic infrastructure
→ option to re-use H1 yoke to shield magnet
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Projected Sensitivity
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CAPP projection
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