

Search for Dark Matter Axions with MADMAX Dark Side of the Universe, Buenos Aires 15-19/07/19 Christian Strandhagen

DARK MATTER CANDIDATES:

ADAPTED FROM XKCD.COM/2035

meV meV eV KeV MeV GeV TeV 10-18kg

DARK MATTER CANDIDATES:

10⁻²⁴eV 10⁻¹⁸eV meV meV eV KeV MeV GeV TeV 10⁻¹⁸kg GRAVITINOS

ADAPTED FROM XKCD.COM/2035

DARK MATTER CANDIDATES:

ADAPTED FROM XKCD.COM/2035

DARK MATTER CANDIDATES:

ADAPTED FROM XKCD.COM/2035

The QCD Lagrangian contains a **CP-violating** term

$$\mathcal{L}_{QCD} = \dots + \frac{\alpha_S}{8\pi} \bar{\theta} G_{\mu\nu a} \tilde{G}_a^{\mu\nu}, \bar{\theta} = \theta_{QCD} + \theta_{Yukawa} \in [-\pi, \pi] \sim \mathcal{O}(1)$$

→ violates **T** and **P** and thus **CP** → induces **electric dipole moment** (EDM) of neutron $d \sim \bar{\theta} \cdot 10^{-16} ecm$

experimentally:

$$d < 10^{-26} ecm \Rightarrow \bar{\theta} < 10^{-10}$$

Why is θ so small? \rightarrow **Strong CP problem**

The solution: make θ a dynamical parameter by introducing a scalar field by adding a new U(1)_{PQ} symmetry (Peccei-Quinn)

U(1)_{PQ} spontaneously broken at high energy scale f_a θ minimum is degenerate → arbitrary value chosen

The solution: make θ a dynamical parameter by introducing a scalar field by adding a new U(1)_{PQ} symmetry (Peccei-Quinn)

potential gets tilted during QCD phase transition (T < 1 GeV) field starts oscillating → axion acquires mass

The solution: make θ a dynamical parameter by introducing a scalar field by adding a new U(1)_{PQ} symmetry (Peccei-Quinn)

Axions created in early universe through **initial misalignment** are good candidate for **cold dark matter**

Axions created in early universe through **initial misalignment** are good candidate for **cold dark matter**

peV	neV	μeV	meV	eV	ma
1.111				111111 11111	

Axions created in early universe through **initial misalignment** are good candidate for **cold dark matter**

astrophysical bounds

Axions created in early universe through **initial misalignment** are good candidate for **cold dark matter**

peV	neV	μeV	meV	eV	ma
1				1110 11100 11100	

too much dark matter*

*depends on the actual cosmology

astrophysical bounds

Axions created in early universe through **initial misalignment** are good candidate for **cold dark matter**

too much dark matter*	axion dark matter	astrophysical bounds
*depends on the actual cosmology		
EBERHARD KARLS	_	

eberhard karls NIVERSITÄT

TÜBINGEN

How to Detect Axions

 axions are pseudo-scalar bosons (like pions) and have a 2-photon-coupling:

$$g_{a\gamma} = 2 \cdot 10^{-16} \text{GeV}^{-1} \frac{m_a}{\mu e V} |C_{a\gamma}|, C_{a\gamma} \sim \mathcal{O}(1)$$

- their de Broglie wavelength is large (O(m))
 - → we can treat them as **classical wave**
 - → axions appear as a source term in Maxwell's equations

 $abla \cdot \boldsymbol{D} =
ho - g_{a\gamma} \boldsymbol{B_e} \cdot \nabla \boldsymbol{a}$ $abla \times \boldsymbol{H} - \dot{\boldsymbol{D}} = \boldsymbol{J} + g_{a\gamma} \boldsymbol{B_e} \dot{\boldsymbol{a}}$

How to Detect Axions

In an external **B field B**, the **axion field a(t)** sources an oscillating E field E,

axion-induced electric field: $|E_a| = \left|\frac{-g_{a\gamma B_e}}{\epsilon}a\right| = 1.3 \cdot 10^{-12} \text{Vm}^{-1} \left(\frac{B_e}{10\text{T}}\right) \left(\frac{\rho_a}{0.3 \text{GeV cm}^{-3}}\right)^{1/2} \frac{|C_{a\gamma}|}{\epsilon}$ EBERHARD KARLS 10

Dielectric Haloscope

In an external **B field B**_e the **axion field a(t)** sources an oscillating **E field E**_a

 E_a is different in materials with different ϵ

At the surface, E_{\parallel} must be continuous \rightarrow emission of electromagnetic waves

power emitted from single interface:

Dielectric Haloscope

power emitted from all interfaces:

boost emitted power through

coherent emission from

multiple interfaces

 $\dot{z} = \frac{P_{\text{tot}}}{P}$

resonance effects

power boost factor

Dielectric Haloscope

- $|\beta|^2 > 10^4$ achievable with 80 disks and $\epsilon = 24$
- non-uniform disk spacing of ~ λ/2 can achieve "broadband" response
- precision required for disk spacing < 10 μm

EBERHARD KARLS

TUBINGEN

Boost Factor

frequency is tuned by adjusting disk spacings

area law: $\beta^2 \cdot \Delta \nu_\beta \sim \text{const.}$ \Rightarrow broad-band scan for search \Rightarrow narrow-band to check signal candidates

Proof of Principle Setup

Test setup at MPP Munich

- up to **20 disks** (Ø = 20 cm, ε ≈ 9)
- reproducibility of positioning ~ μm

Proof of Principle Setup

Ap-Δg≥±± Max-Planck-Institut für Physik

Test setup at MPP Munich

TUBINGEN

- up to **20 disks** (Ø = 20 cm, ε ≈ 9)
- reproducibility of positioning ~ μm
- compare reflectivity measurements to model calculations

Proof of Principle Setup

15

Test setup at MPP Munich

- up to **20 disks** (\emptyset = 20 cm, $\varepsilon \approx 9$)
- reproducibility of positioning ~ µm
- compare reflectivity measurements to model calculations
- **boost factor** reproducible within few MHz for 5 disks

The MADMAX Collaboration

Max-Planck-Institut für Physik Wome-Hisenberg-Institut

EBERHARD KARLS

TÜBINGEN

IVERSITÄT

Max-Planck-Institut für Radioastronomie

Universität Hamburg

MADMAX Timeline

2017 – 2019 Design

Magnet

EBERHARD KARLS

TUBINGEN

block design with NbTi superconductor

- design and construction of magnet drives time scale of project
- **peak field ~ 9 T**, homogeneity < 20 %
- dimensions of bore: length ~ 1 m, **diameter ~ 1.5 m**

Magnet

EBERHARD KARLS

TUBINGEN

- design and construction of magnet drives time scale of project
- **peak field ~ 9 T**, homogeneity < 20 %
- dimensions of bore: length ~ 1 m, **diameter ~ 1.5 m**

Disks

Universität Hamburg

- requirements: high ε, low loss (tan δ)
 → candidate materials:
 - LaAlO3 (ε ≈ 24, tan δ ≈ few 10⁻⁵)
 - Sapphire ($\epsilon \approx 9$, tan $\delta \approx 10^{-5}$)
- Ø = 1.25 m needed for 100 T² m²
 → tiling necessary
- characterisation of dielectric properties @ 4K, f = 10-15 GHz ongoing

Study achievable boost factor using different simulation methods to optimize design

- 3D effects (diffraction) → ~30% loss
- coupling to antenna (beam shape)
- dielectric loss

. . .

EBERHARD KARLS

TI'IBINGEN

- inaccuracies

 (positioning, surface
 roughness, thickness)
- effects due to tiling

Study achievable boost factor using different simulation methods to optimize design

- 3D effects (diffraction) $\rightarrow \sim 30\%$ loss
- coupling to antenna (beam shape)
- dielectric loss
- inaccuracies

 (positioning, surface
 roughness, thickness)
- effects due to tiling

. . .

EBERHARD KARLS

 \rightarrow small for tan $\delta < 10^{-4}$

(combined)

(combined)

Study achievable boost factor using different simulation methods to optimize design

- 3D effects (diffraction) $\rightarrow \sim 30\%$ loss
- coupling to antenna (beam shape)
- dielectric loss
- inaccuracies

 (positioning, surface
 roughness, thickness)
- effects due to tiling

 → small for tan δ < 10⁻⁴
 → tilt < 0.1 mrad thickness ± 5 μm sourface roughness < 10 μm positioning < 10 μm

. . .

(combined)

Study achievable boost factor using different simulation methods to optimize design

- 3D effects (diffraction) $\rightarrow \sim 30\%$ loss
- coupling to antenna (beam shape)
- dielectric loss
- inaccuracies

 (positioning, surface
 roughness, thickness)
- effects due to tiling

. . .

EBERHARD KARLS

TUBINGEN

 → small for tan δ < 10⁻⁴
 → tilt < 0.1 mrad thickness ± 5 μm sourface roughness < 10 μm positioning < 10 μm

More on the methods: arXiv:1906.02677

MADMAX Timeline

2019 - 2022 2017 - 2019Design Prototype

first steps:

- build an intermediate-scale prototype of booster to test mechanics, receiver, ...
- put it in an existing magnet
- do some physics

(2019)

186

79

Ø > 350

Focusing mirror: ellipse 1010 x 660

Prototype Sensitivity - ALPs

Axion-like Particle Search:

with less and smaller disks
and lower B-field (~ 3T)
→ don't reach QCD axion
sensitivity

but

explore new parameter space for ALPs

* assuming system temperature ~8K

Sensitivity – Hidden Photons

Hidden photon search

hidden photon mixes with normal photon → conversion doesn't

require magnetic field

EBERHARD KARLS

TUJBINGEN

MADMAX Timeline

Experimental Site

planned to be built at **DESY** in HERA Hall North
→ use existing cryogenic infrastructure
→ option to re-use H1 yoke to shield magnet

Projected Sensitivity

* assuming system temperature ~8K

