

QUBIC: Q & U BOLOMETRIC INTERFEROMETER FOR COSMOLOGY

Claudia Scóccola

Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata CONICET

July 19th, 2019 (DSU 2019 Meeting)

Outline

What are the primordial B modes polarization?

The QUBIC instrument

The Alto Chorrillos site

Spectro-imaging with QUBIC

Current Status

Relic radiation from the Big Bang: CMB

Relic radiation from the Big Bang: CMB

 $\delta T(\theta,\phi) = \sum_{lm} a_{lm}^T Y_{lm}(\theta,\phi)$

Relic radiation from the Big Bang: CMB

July 19th, 2019 DS

QUBIC

Thomson scattering

No polarization if isotropy Net polarization if anisotropy

Thomson scattering

No polarization if isotropy Net polarization if anisotropy

• Predicted in 1968, and confirmed in 2002 by DASI.

Thomson scattering

No polarization if isotropy Net polarization if anisotropy

- Predicted in 1968, and confirmed in 2002 by DASI.
- Density (scalar) perturbations are responsable for most of the CMB anisotropy and polarization.

Thomson scattering

No polarization if isotropy Net polarization if anisotropy

- Predicted in 1968, and confirmed in 2002 by DASI.
- Density (scalar) perturbations are responsable for most of the CMB anisotropy and polarization.
- Also a small contribution from tensor perturbations → method to disentangle the fraction of polarization originated in gravitational waves.

Stokes parameters — E and B modes

Polarization is typically described in terms of Stokes parameters Q and U, that can be expanded in spherical harmonics with spin 2:

$$(Q \pm iU) = \sum_{lm} a_{lm}^{(\pm 2)} Y_{lm}^{(\pm 2)} .$$
 (1)

Stokes parameters — E and B modes

Polarization is typically described in terms of Stokes parameters Q and U, that can be expanded in spherical harmonics with spin 2:

$$(Q \pm iU) = \sum_{lm} a_{lm}^{(\pm 2)} Y_{lm}^{(\pm 2)} .$$
 (1)

Alternatively, E and B modes are defined through the linear combinations

$$a_{lm}^{E} = -(a_{lm}^{(+2)} + a_{lm}^{(-2)})/2$$

$$a_{lm}^{B} = -(a_{lm}^{(+2)} - a_{lm}^{(-2)})/2i \quad .$$
(2)

E modes are parity invariant (scalar), while B modes change sign under a parity transformation (pseudo-scalar).

Stokes parameters — E and B modes

Polarization is typically described in terms of Stokes parameters Q and U, that can be expanded in spherical harmonics with spin 2:

$$(Q \pm iU) = \sum_{lm} a_{lm}^{(\pm 2)} Y_{lm}^{(\pm 2)} .$$
 (1)

Alternatively, E and B modes are defined through the linear combinations

$$a_{lm}^{E} = -(a_{lm}^{(+2)} + a_{lm}^{(-2)})/2$$

$$a_{lm}^{B} = -(a_{lm}^{(+2)} - a_{lm}^{(-2)})/2i \quad .$$
(2)

E modes are parity invariant (scalar), while B modes change sign under a parity transformation (pseudo-scalar).

These modes are non-local, and describe a polarization pattern around each point in the sky: E modes (curl free) and B modes (divergence free).

E and B modes polarization

Decomposition into *E* and *B* modes

Decomposition into *E* and *B* modes

Decomposition into *E* and *B* modes

• Detection of *B*-modes peaking over angular scales of the order of one degree in the sky and independent of frequency would be a **footprint of primordial gravitational waves**.

- Detection of *B*-modes peaking over angular scales of the order of one degree in the sky and independent of frequency would be a **footprint of primordial gravitational waves**.
- *B*-modes are also expected due to lensing of *E*-modes. It occurs at smaller angular scales.

- Detection of *B*-modes peaking over angular scales of the order of one degree in the sky and independent of frequency would be a **footprint of primordial gravitational waves**.
- *B*-modes are also expected due to lensing of *E*-modes. It occurs at smaller angular scales.
- *B*-modes can be generated by Faraday rotation of *E*-modes in primordial magnetic fields, but **depends on frequency**.

- Detection of *B*-modes peaking over angular scales of the order of one degree in the sky and independent of frequency would be a **footprint of primordial gravitational waves**.
- *B*-modes are also expected due to lensing of *E*-modes. It occurs at smaller angular scales.
- *B*-modes can be generated by Faraday rotation of *E*-modes in primordial magnetic fields, but **depends on frequency**.
- Density fluctuations can also generate *B*-modes through non-linear effects that generate secondary vector and tensor modes, but with a **significantly reduced amplitude**.

$$\langle h^2
angle = rac{V(\phi)}{M_{
m Planck}^4}$$

(3)

10

The amplitude in gravitational waves h is related to the energy scale of the inflaton potential.

$$\langle h^2 \rangle = \frac{V(\phi)}{M_{\rm Planck}^4}$$
 (3)

The amplitude in gravitational waves h is related to the energy scale of the inflaton potential.

$$\langle h^2 \rangle = \frac{V(\phi)}{M_{\rm Planck}^4}$$
 (3)

Tensor-to-scalar ratio:

$$r = \frac{\langle h^2 \rangle}{\langle (\delta \rho / \rho)^2 \rangle} = \frac{A_T}{A_S}$$
(4)

The amplitude in gravitational waves h is related to the energy scale of the inflaton potential.

$$\langle h^2 \rangle = \frac{V(\phi)}{M_{\rm Planck}^4}$$
 (3)

Tensor-to-scalar ratio:

$$r = \frac{\langle h^2 \rangle}{\langle (\delta \rho / \rho)^2 \rangle} = \frac{A_T}{A_S}$$
(4)

A measurement of r would reveal the presence of primordial gravitational waves, and determine the energy scale (the potential V) at which inflation took place:

$$V \approx \frac{r}{0.01} (10^{16} {
m GeV})^4$$
 (5)

Anisotropies Angular Power Spectrum

The QUBIC instrument

• Sensitivity:

• Astrophysical Foregrounds:

• Sensitivity:

• Signal amplitude $\sim \mu K$ on a 3K background.

• Astrophysical Foregrounds:

• Sensitivity:

- Signal amplitude $\sim \mu K$ on a 3K background.
- $\bullet \; \Rightarrow \; \mbox{We need extremely sensitive and stable detectors at 150GHz.}$
- Astrophysical Foregrounds:

• Sensitivity:

- Signal amplitude $\sim \mu K$ on a 3K background.
- $\bullet \; \Rightarrow \; \mbox{We need extremely sensitive and stable detectors at 150GHz.}$

• Astrophysical Foregrounds:

• Interstellar Dust is known to be high (BICEP2 made a false alert in 2014).

• Sensitivity:

- Signal amplitude $\sim \mu K$ on a 3K background.
- $\bullet \; \Rightarrow \; \mbox{We need extremely sensitive and stable detectors at 150GHz.}$

• Astrophysical Foregrounds:

- Interstellar Dust is known to be high (BICEP2 made a false alert in 2014).
- Need detectors at higher frequency.

• Sensitivity:

- Signal amplitude $\sim \mu K$ on a 3K background.
- $\bullet \; \Rightarrow \; \mbox{We need extremely sensitive and stable detectors at 150GHz.}$

• Astrophysical Foregrounds:

- Interstellar Dust is known to be high (BICEP2 made a false alert in 2014).
- Need detectors at higher frequency.

• Systematics effects:

Needed for:

- accurate polarization modulation
- detailed knowledge of instrument properties

Possible instruments

- Imagers with bolometers:
 - Nice detectors for CMB:
 - wide band
 - Iow noise

Possible instruments

- Imagers with bolometers:
 - Nice detectors for CMB:
 - wide band
 - Iow noise
 - Diffraction on external optical elements, ground pickup, Polarization... may be an issue

Possible instruments

- Imagers with bolometers:
 - Nice detectors for CMB:
 - wide band
 - Iow noise
 - Diffraction on external optical elements, ground pickup, Polarization... may be an issue
- Interferometers:
 - Long history in CMB
 - CMB anisotropies in the late 90s (CAT, VSA)
 - CMB polarization (DASI, CBI)

Possible instruments

- Imagers with bolometers:
 - Nice detectors for CMB:
 - wide band
 - Iow noise
 - Diffraction on external optical elements, ground pickup, Polarization... may be an issue

• Interferometers:

- Long history in CMB
 - CMB anisotropies in the late 90s (CAT, VSA)
 - CMB polarization (DASI, CBI)
- Clean systematics
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Possible instruments

- Imagers with bolometers:
 - Nice detectors for CMB:
 - wide band
 - Iow noise
 - Diffraction on external optical elements, ground pickup, Polarization... may be an issue

• Interferometers:

- Long history in CMB
 - CMB anisotropies in the late 90s (CAT, VSA)
 - CMB polarization (DASI, CBI)
- Clean systematics
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)
- Technology used so far:
 - Antennas and HEMTs: higher noise
 - Correlators: hard to scale to large N_subchannels (high costs)

Good sensitivity — Good control of systematics

Good sensitivity — Good control of systematics We want both characteristics!

BROWN

More than 90 members

eirap

IAS -

6 countries

22 labs

G.E.M.A

CENEM

NUI MAYNOOT

QUBIC Site

July 19th, 2019

July 19th, 2019

QUBIC as a synthesized imager

Simulated synthesized beam polycromatic

UBIC

Point-source as seen in the focal plane

July 19th, 2019 DSU2019 Meeting

QUBIC

Data Analysis more complex but richer than with a classical imager

Claudia Scóccola

July 19th, 2019

QUBIC

QUBIC Main Features

TES Focal planes

- ★ 2048 TES with NEP ~ 4×10⁻¹⁷ W.Hz^{-1/2}
- ★ 128:1 SQUIDs+ASIC Mux Readout

400 Elements Bolometric Interf.

- \star Synthesized imaging on focal planes
- ★ 23.5 arcmin FWHM

Dual Band operations

★ One focal plane for each band
★ 150 and 220 GHz

• Switches one each horn

- ★ Ability to reconstruct baselines individually
- \star Self-Calibration like an interferometer

TES: Transition Edge Sensors

High Sensitivity

r < 0.01 @ 95%C.L.(No foregrounds) r < 0.02 @ 95%C.L.(inc. foregrounds)

Synthesized imager scanning the sky Perfect beam control

Dust Polarisation contamination removal

Unprecedented control of systematics with Self-Calibration

July 19th, 2019

QUBIC a Q&U Bolometric Interferometer for Cosmology

Self-calibration performance

QUBIC

Technological Demonstrator

	TD	FI
Focal plane	1 (@150GHz)	2 (@150, 220GHz)
Detectors	1 x 256TES	2 x 1024TES
Back-to-back horns	64	400

Table 1. Main difference between TD and FI.

Current status - Instrument calibration

a)

(b)

Panel (a) shows one of the two cryogenic detection chains. On top of the chain, one can see the TES focal plane. Panel (b) shows the array of the 64 + 64 back-to-back dual-band corrugated horns interfaced with the switch array.

BIS a Q&U Bolometric Interferometer for Cosmology

Current status - Instrument calibration

(c) (d) Panels (c) and (d) show the 1 K box before and during the integration into the QUBIC cryostat.

Current status - Observed beam

Comparison between the synthesised beam measured with one of the TES in the technological demonstrator (left panel) and the predicted beam without aberration effects (right panel).

(see Martín Gamboa's poster)

Angular resolution as a function of frequency

Fig. 7. Angular resolution (FWHM) measured with two independent methods (*sigma* in blue and *fit* in red lines). Dashed line shows the frequency used to simulated the TOD in simulations. Black dots are represents the theoretical angular resolution in the frequencies of sub-band reconstruction.

(see Martín Gamboa's poster)

Beam as a function of frequency

Fig. 6. Upper row: real measurements with TD. Lower row: Theoretical SB. Redline is a rule to see easily how the secondary peaks close to the center when the frequency rises as is expected.

(see Martín Gamboa's poster)

• QUBIC first module aims at constraining B-modes polarization down to $\sigma(r) = 0.01$ with 2 years of data

- QUBIC first module aims at constraining B-modes polarization down to $\sigma(r) = 0.01$ with 2 years of data
- The integration and cooling down of the instrument has been performed succesfully

- QUBIC first module aims at constraining B-modes polarization down to $\sigma(r) = 0.01$ with 2 years of data
- The integration and cooling down of the instrument has been performed succesfully
- QUBIC is currently in the phase of laboratory calibration of the so-called Technological Demonstrator (TD).
 - only one-quarter of the 150 GHz TES focal plane
 - array of 64 + 64 horns, 64 switches and a smaller optical combiner.
 - The TD will not produce science, but it will demonstrate the feasibility of the bolometric interferometry both in the laboratory and in the field.

- QUBIC first module aims at constraining B-modes polarization down to $\sigma(r) = 0.01$ with 2 years of data
- The integration and cooling down of the instrument has been performed succesfully
- QUBIC is currently in the phase of laboratory calibration of the so-called Technological Demonstrator (TD).
 - only one-quarter of the 150 GHz TES focal plane
 - array of 64 + 64 horns, 64 switches and a smaller optical combiner.
 - The TD will not produce science, but it will demonstrate the feasibility of the bolometric interferometry both in the laboratory and in the field.
- This testing phase will end in the following months, and shipped to Argentina. First-light test foreseen within 2019.

- QUBIC first module aims at constraining B-modes polarization down to $\sigma(r) = 0.01$ with 2 years of data
- The integration and cooling down of the instrument has been performed succesfully
- QUBIC is currently in the phase of laboratory calibration of the so-called Technological Demonstrator (TD).
 - only one-quarter of the 150 GHz TES focal plane
 - array of 64 + 64 horns, 64 switches and a smaller optical combiner.
 - The TD will not produce science, but it will demonstrate the feasibility of the bolometric interferometry both in the laboratory and in the field.
- This testing phase will end in the following months, and shipped to Argentina. First-light test foreseen within 2019.
- The deployment of QUBIC final instrument is foreseen to be completed by 2020.
Summary

- QUBIC is a new way to measure the polarization of the CMB.
- It combines the sensitivity of TES bolometric arrays with the control of systematic effects that are typical of interferometers.
- The design of QUBIC allows for self-calibration and spectral imaging.
- A **technological demonstrator** is currently being tested in the laboratory and will soon be deployed in Argentina for a first-light test.
- We forecast the installation of the **final instrument** and the start of scientific operations during 2020, opening the way for a new generation of instruments in the field of CMB polarimetry.

Thanks for your attention !!

