A Global Liquid Argon Dark Matter Search Program

M. Ave (Universidade de São Paulo, Brazil) on behalf of GADMC

Global Argon Dark Matter Collaboration

DEAP (AAr, Single-Phase, 3.3 tons)

Ultimate Goal

WIMP search down to the neutrino floor with no experimental background

Key technologies **Time Projection Chamber**

DS-50

- Z position: S1/S2 time difference
- XY position: Fraction of light in each PMT in S2 pulse. 4

Key technologies Liquid Argon

Key technologies Underground Argon

AAr: 1 [Bq/kg] of ³⁹Ar **UAr**: 0.73 [mBq/kg] of ³⁹Ar

URANIA (Colorado, USA) Extraction 250 kg/day at Kinder Morgan/Air Product plants.

ARIA (Seruci, Sardinia, Italy) Distillation Column for final Argon purification (CO, CO₂, H₂O, O₂, CH₄)

Also ³⁹Ar further depletion for ARGO and DS-LowMass

Transportation and Storage scheme: avoid leakage ad UAr activation

Key technologies Photodetectors

Silicon PhotoMultipliers

- High Photon Detection Efficiency (>45% at 420 nm).
- Easily integrated into Tiles.
- Low Radioactive Background.

Required performance:

- DCR lower than 0.1 Hz/mm² at cryogenic temperatures
- Direct/Delayed Cross talk and Afterpulsing ~30%

Motherboard: 25x25 cm 25 PDMs

PDM: 5x5 cm

Key technologies Material purity

Big effort in radioactive purity assays to assure the goal of 0.1 neutrons in 100 ton~year exposure.

Key technologies Neutron background abatement

- Material radio-purity: Photo-Electronics front end and Acrylic Purity.
- Fiducialization : 50 ton (Active) 20 ton (Fiducial)
- Outer Neutron Veto

Key technologies Proto Dunes Cryostat

Developed for DUNES. 8x8x8 m (inner dimensions)

Darkside+CERN Neutrino Platform partnership;

DS-20K (2022-2027)

DS-20k TPC Dimensions	
TPC Drift Length	$350\mathrm{cm}$
Octagonal Inscribed Circle Diameter	$355\mathrm{cm}$
Total LAr Mass	$51.1\mathrm{t}$
Active LAr Mass	$49.7\mathrm{t}$
Fiducial Cut Distance (vertical)	$70\mathrm{cm}$
Fiducial Cut Distance (radial)	$30\mathrm{cm}$
Fiducial LAr Mass	$20.2\mathrm{t}$
Nominal TPC Fields and Settings	
Drift Field	$200 \mathrm{V/cm}$
Extraction Field	$2.8\mathrm{kV/cm}$
Luminescence Field	$4.2\mathrm{kV/cm}$
Cathode Voltage	$-73.8\mathrm{kV}$
Extraction Grid Voltage	$-3.8\mathrm{kV}$
Anode Voltage	ground
Gas Pocket Thickness	$7\mathrm{mm}$
Grid Wire Spacing	$3\mathrm{mm}$
Grid Optical Transparency	97%
SiPM PDM	
Number of PDM on TPC Top	4140
Number of PDM on TPC Bottom	4140
PDM Effective Area	$50 \times 50 \mathrm{mm^2}$

TPC is an acrylic vessel 5 cm thick with field shaping rings coated.

Efficient use of UAr

Prototypes being constructed at CERN

Proto-Proto

Testing

- The first two Motherboards.
- Acrylic bonding technique.
- Clevios coating.
- ESR reflectors

Optimization of S2 signal (Gas pocket)

Yi Wang

Being commissioned at CERN this month

The ReD project

- ⁷Li(p,n)⁷Be tagging ⁷Be with Silicon detector
- Neutron scatters elastically off ⁴⁰Ar at TPC
- Tagged by Liquid Scintillator detector with PSD capabilities
 Array of LSci so recoils parallel/perpendicular to the electric field are tagged

On going experiment at LNS (Catania, Italy)

First results expected in 2020.

Low Mass sensitivity

Ionization yield in Argon

- Argon is sensitive to 2-10 GeV WIMPs if nuclear recoil detection threshold is <=1 keV^{ne}
- No ER/NR discrimination (detection based on spectral shape)
- Sensitivity depends on overall background level.

Scintillation signal threshold too high. Ionization signal needs to be used.

For Argon, 1 keV^{ne} \rightarrow 5-9 electrons

The ionization signal in DS-50

1 electron \rightarrow 23 PE (at the center of the TPC)

DS-50 is fully efficient for $N_{p} > 2$

Only events in TPC core are used (less background, a better single electron resolution)

Getter Off 10 Events / [0.05 Ne- \times kg \times day] Getter On Ext 10 1 10 10-2 0.5 1 1.5 2 2.5 0 N_e-

Center PMT

DS-50 DATA

For N_e <3 background is mostly due to impurities.

The N_{p} spectrum in DS-50

The first 100 days of the UAr run have ³⁷Ar, very useful to calibrate the ER ionization yield at energies as low as 270 eV.

The expected N_e spectrum for WIMPs

The corresponding cross section limits

DS-50 has excellent sensitivity in the 2-10 GeV mass range.

Not possible without **Underground Argon** (1400 lower ³⁹Ar content than Atmospheric) Very good prospects for DS-20K.

Conclusions

GADMC pursues a sensible search of WIMPs down to the neutrino floor with no experimental background.