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SUSY breaking scale can be anywhere between EW scale and MP

Why low-scale SUSY? What can low-scale SUSY do for us?

(A) gauge coupling unification

(B) Higgs vacuum stability

(C) radiative EW symmetry breaking

(D) dark matter

(E) ameliorate hierarchy problem
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How about high-scale SUSY?

e.g. minimal SUSY SO(10) with � m̃ ≳ minf ≃ 3 × 1013 GeV
[S. Ellis, T. Gherghetta, KK, K. Olive, ’18]

threshold corrections

light GUT Higgs state

gravitino



In this talk, “high-scale” means… m̃ ≡
F

Λmess
> minf ≃ 3 × 1013 GeV

m3/2 ∼
F

MP
≳

minfΛmess

MP
≳

m2
inf

MP
∼ 𝒪(0.1) EeV

Λmess > m̃ > minf

EeV gravitino is a good candidate for dark matter [Dudas, Mambrini, Olive]

Any SUSY particles (except for gravitino) have never been produced after inflation

Gravitino is produced through gluon + gluon → gravitino + gravitino (gluino exchange) 
whose reaction rate is

Number density of gravitino is given by 

Γ ∼
T9

F4
∼

T9

M4
Pm4

3/2

n3/2/nγ ∼ Γ/H ∝ T7 Ω3/2h2 ≃ 0.11 ( 0.1 EeV
m3/2 )

3

( TRH

2.0 × 1010 GeV )
7

[Benakli, Chen, Dudas, Mambrini]



How about inflaton decays? The detail depends on models?

— Tree-level decay depends on how the inflaton couples to the gravitino
— Loop-level decay depends on how the inflaton reheats the universe

[KK, Y. Mambrini, K. Olive, ’19]

reheating by inflaton decay

inflaton
SM

SM

gravitino production through the same coupling

SM
inflaton

gravitino

gravitino

Γtree =
y2

8π
m Γloop ∼ Γtree ×

1
(4π)2

m2
3/2m6

(m3/2MP)4

1
F2

∼
1

(m3/2MP)2



To be more concrete, we consider a no-scale inflation model

K = − 3 ln [T + T* −
1
3

( |ϕ |2 + |yi |
2 )] + |z |2 −

(zz*)2

Λ2
z

W = 3MTϕ (T −
1
2 ) + 3m3/2(z + ν) + WMSSM

T : inflaton, 
φ: matter-like field, 
yi: MSSM fields,
z: Polonyi field

Starobinsky-like inflaton potential

ReT =
1
2

e
2
3 t ≃

1
2

+
1

6
t

Dominant inflaton decay channel: t → hh (the lightest Higgs)

ℒ ⊃
2
3

μ2 t( |Hu |2 + |Hd |2 ) +
μ2

2 6
t( H̃ u H̃ d + h . c.) (WMSSM ⊃ μHuHd)

Γ2h =
μ4

48πMT M2
P

≡
y2

8π
MT y2 ≡

μ4

6M2
T M2

P
≃ (5.6 × 10−5)2 × ( μ

1014 GeV )
4

( 3 × 1013 GeV
MT )

2

decay width:

Since we consider �  in high-scale SUSY, this channel becomes much more 
significant, compared to the low-scale SUSY case.

μ > MT

TRH ≃ 0.5(y/2π) MT MP ≃ 3.8 × 1010 GeV × ( y
5.6 × 10−5 ) ( MT

3 × 1013 GeV )
1/2

Tmax ≃ 0.5(8π /y2)1/4TRH



Tree-level coupling of inflaton to gravitinos (� ):G = K + ln |W |2

ℒ3/2 ⊃ −
1
4

eG/2ψμ[γμ, γν]ψν ≃ −
1
4 (m3/2 +

1
2

⟨GT + UTzGz⟩T + ⋯) ψμ[γμ, γν]ψν

t

gravitino

gravitino

t

gravitino

gravitino

z
x

Γtree = ( Λz

MP )
4 81m2

3/2MT

128πM2
P

One-loop decay of inflaton to gravitinos

t
h

h

h̃

gravitino

gravitino

(example)

Because of large �  contribution, the 
loop-induced decay can be comparable 
with (or even larger than) the tree-level 
decay, depending on �

t → hh

Λz

Γloop ≃
2

3345π5 ( 1
4

− ln
μ2

M2
T )

2
μ4M5

T

m2
3/2M6

P

Btree
R ≃ 5.5 × 10−12 ( Λz

MP )
4

( m3/2

0.1 EeV )
2

Bloop
R ≃ 9.8 × 10−15 ( 0.1 EeV

m3/2 )
2

( MT

3 × 1013 GeV )
6

[1 − 8 ln ( μ
MT )]

2

× ( MT

3 × 1013 GeV )
2

( 1014 GeV
μ )

4
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Ωh2 |decay ≃ 0.1 ( NBR

8.7 × 10−7 ) ( 3 × 1013 GeV
MT ) ( TRH

1010 GeV ) ( m3/2

GeV ) NBR ≡ Btree
R + Bloop

R

TRH ∼ 3 × 1010 GeV

allowed region

m3/2 ∼ 1 EeV

[KK, Y. Mambrini, K. Olive, ’19]
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with ⇤8
⌘ 9m

4

3/2
M

4

P
/21.65. Then, from Eqs. (12) and

(13), we obtain

⌦h
2
|
inst

ann
= 1.9 ⇥ 1025

T
7

RH

m
3

3/2
M

4

P

ln


Tmax

TRH

�

' 0.12
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0.1 EeV

m3/2

◆3 ✓
y

2.3 ⇥ 10�5
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⇥
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MT

3 ⇥ 1013 GeV
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ln
⇣
1.1/y

1/2

⌘
, (29)

where the instantaneous thermalization of SM particles
is implicitly assumed. On the other hand, when the non-
instantaneous thermalization e↵ect in the gravitino pro-
duction is incorporated, we have [28]

⌦h
2
|
non�inst

ann
= 0.12

✓
0.1 EeV

m3/2

◆3 ✓
MT

3 ⇥ 1013 GeV

◆67/10

⇥

✓
y

3.0 ⇥ 10�7

◆19/5 ✓0.03

↵3

◆16/5

(30)

where only gluon pair annihilation was assumed. We
evaluate the SU(3)C gauge coupling ↵3 = g

2

s
/4⇡ at TRH

by solving renormalization group equations at two-loop
level.

In this model, gravitinos are also produced by the tree-
level decay of inflaton. Although the tree level coupling
between gravitino and inflaton vanishes when h�i = 0,
supersymmetry breaking shifts h�i, giving rise to the tree
level decay given by7

�tree

t
=

✓
⇤z

MP

◆4 81m
2

3/2
MT

128⇡M
2

P

. (31)

The radiative decay of inflaton to a pair of gravitinos is
induced by the interactions given by

L � CtSS t(|Hu|
2 + |Hd|

2) + CtFF t( eHu
eHd + h.c.), (32)

where CtSS ⌘
p

2/3µ
2 and CtFF ⌘ µ

2
/2

p
6 [40].8 The

other relevant terms in the supergravity Lagrangian are
given by

L � �
i

p
2MP

(@µ'
⇤) 

⌫
�

µ
�

⌫
�L + h.c. (33)

where we denote a chiral multiplet (',�L). The relevant
diagrams for the radiative decay of inflaton t into a pair

7
By comparing to the result of Ref. [40], the given expression is

corrected by taking into account higher order terms of vacuum

expectation values of T, �, and z, and the mixing between t and

z.
8
Note that those interaction terms are obtained by using equations

of motion. A more rigorous calculation would not use equations

of motion when the interaction terms are relevant for loop di-

agrams. However, a more rigorous treatment of this particular

process is not our main focus, and is expected to have only a

small quantitative e↵ect on our result.

of gravitinos are shown in Fig. 3, where the dominant
contribution is coming from the upper two diagrams (A
and B). While a detailed discussion of the decay width is
given in Appendix , in the case of m3/2 ⌧ MT ⌧ µ we
obtain an approximate expression given by

�loop
'
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✓
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6
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, (34)

where µren is the renormalization scale, and we take
µren = MT in our analysis. Then, by using

NBR '
2(�tree + �loop)

�2h

⌘ B
tree

R
+ B

loop

R
, (35)
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⇥
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✓
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we can evaluate ⌦h
2
|decay given in Eq. (17).
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FIG. 3: The radiative decay of inflaton into a pair of
gravitinos. Dashed (solid) lines in the loop represent the

Higgs bosons (Higgsinos). We label those diagrams as A (top
left), B (top right), C (bottom left), and D (bottom right).

Figure 4 shows the required relation between the µ-
parameter and the gravitino mass when total grav-

itino abundance given by ⌦h
2
|tot = ⌦h

2
|
inst/non�inst

ann +

over production



How can this heavy gravitino be detected?

Gravitino can decay when R-parity is not conserved

The most generic form of the RPV interactions (at renormalizable level)

WRPV = μ′�iHu ⋅ Li +
1
2

λijkLi ⋅ LjEc
k + λ′�ijkLi ⋅ QiDc

k +
1
2

λ′�′�ijkU
c
i Dc

j Dc
k

In low-scale SUSY, the RPV couplings are strongly constrained by, for instance, 
neutrino mass, proton decay, and baryon asymmetry preservation

In high-scale SUSY, most of the limits become significantly weak

ℒ5 ≃
1

M5
νLνLhh 1

M5
≃ ( μ′�

μ )
2 g2

2 M1 + g2
1 M2

M1M2(1 + tan2 β)

For example, �  is constrained by the neutrino mass:μ′�

μ′� < 1.7 × 10−7GeV−1/2 m̃ 1/2μ(1 + tan2 β)2/g ≃ 6.6 × 1013 GeV
(μ ∼ M1 ∼ M2 ∼ m̃ ∼ 3 × 1013 GeV)

cf. in low (weak)-scale SUSY: μ′� < 2.3 × 10−5 GeV (B-L asym. preservation)



Gravitino decay is induced by the bilinear RPV coupling: �WRPV ⊃ μ′�Hu ⋅ L

ℒ ⊃ −
i

8MP
λγμ[γν, γρ]ψμFνρ + [−

i

2MP

Dμϕ†ψνγμγν χL + h . c . ]
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Due to the longitudinal contributions in 
�  channels, 
�  at �

Equivalence theorem: �

Total decay width: �

Zν/Wl
Γ(ψμ → Zν/Wl) ≫ Γ(ψμ → γν) m3/2 ≫ mW

2ΓZν = ΓWl = 2Γhν

Γtot ≃
ϵ2c2

βm3
3/2

16πM2
P

M1 = M2 /2 = μ = 1014 GeV
ϵ ≃ μ′�/μ



Constraints/signals for the decaying gravitino dark matter

Lifetime: �τ3/2 ≃ 1028 ( m̃
1014 GeV )

2

( 0.44 keV
μ′�cβ )

2

( EeV
m3/2 )

3

s . (μ ∼ m̃ )

By using � , we can eliminate �  and obtain the 

RPV parameter scale:

Ω3/2h2 ≃ 0.11 ( 0.1 EeV
m3/2 )

3

( TRH

2.0 × 1010 GeV )
7

m3/2

μ′�cβ = 14 keV ( Ω3/2h2

0.11 )
1/2

( 1028 s
τ3/2 )

1/2

( m̃
1014 GeV ) ( 2 × 1010 GeV

TRH )
7/2

cf. in low (weak)-scale SUSY: μ′�cβ ≃ 1.4 keV ( 10 TeV
m̃ )

2

( Ω3/2h2

0.11 )
3/2

( 1028 s
τ3/2 )

1/2

( 2.2 × 106 GeV

TRH )
3/2

A smoking-gun signal could be EeV scale monochromatic neutrinos

�  is allowed for high-scale SUSYm3/2 ≳ 0.1 EeV

By taking �m3/2 = 0.1 EeV, τ3/2 = 1.4 × 1028 s

The number of decaying gravitino per year ~ 0.0073, 
equivalently, one gravitino decay every 137 years in 
the volume of the Earth.
ANITA observed 2 neutrino evens around EeV in 3 
years



Summary

Many good features existed in low-scale SUSY are still preserved in high-scale SUSY

EeV gravitino provides the right amount of dark matter number density

In addition to the thermal production, non-negligible contributions from radiative 

inflaton decay always exist as they are related to the reheating processes

EeV gravitino may slowly decay via the RPV coupling, and provides monochromatic 

neutrinos as a smoking-gun signal


