

Latest results from XMASS

ICRR, University of Tokyo K. Kobayashi On behalf of the XMASS collaboration

> July 18th, 2019 Dark Side of the Universe 2019, Buenos Aires, Argentina

XMASS experiment

XMASS

Multi purpose low-background and low-energy threshold experiment with liquid Xenon

- Xenon detector for Weakly Interacting MASSive Particles (dark matter search)
- Xenon MASSive detector for solar neutrino (pp/⁷Be) \geq
- **X**enon neutrino **MASS** detector ($\beta\beta$ decay) \succ

history of XMASS

2	010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
detector constructio completeo (Sep. 2010	on d))	commissioning run (Dec. 2010 - May 2012)	dete refurbis (Aug. - Oct	ector shment 2012 2013)	•	Data takiı Ve have t	ng (Nov. 2 aken data	2013 – Fe a for >5y	eb. 2019 ear.)	→

XMASS detector

- > 72 20-inch PMTs for cosmic-ray muon veto.
- Water is also passive shield for gamma-ray and neutron from rock/wall.
- Inner detector (ID, Liquid Xe)
 - Liquid Xe surrounded by 642 2-inch PMTs.
 - Single phase
 - Observed scintillation light.
 - photo coverage: 62%
 - diameter: ~800mm
 - high light yield: 14.7 PE/keV

Hexagonal PMT Hamamatsu R10789 NIM A922 (2019) 171-176

RI sources

K.Kobayashi, XMASS, DSU 2019

5

Detector response for a point-like source

• The pe dist. well as vertex dist. were reproduced by a simulation well.

-40

-15-10-50

5

10 15

y [cm]

-15-10-50

5 10 15

y [cm]

Search for WIMPs in the fiducial volume: event selection

1. Standard cut

remove electronic noise events, Cherenkov events, after pulse events, and so on.

- Timing based vertex reconstruction R(T)
 First hit timing of each PMT is used.
 Position is fitted by likelihood. Events are selected if R(T)<38cm.
- PE based vertex reconstruction R(PE)
 PE map is made in each position using MC.
 Event vertex is calculated by likelihood.
 Energy is also reconstructed. Events are
 selected if R(PE)<20cm.

²⁴¹Am calibration data (5–10 keV)

Search for WIMPs in the fiducial volume: data

- Dataset
 - Nov. 20th, 2013 Mar. 29th, 2016
- Livetime
 - 705.9days.
- After applying all the cuts (standard cut + R(T) cut + R(PE) cut), event rate becomes ~4 × 10⁻³ /day/kg/keVee @ 5-5.5keVee.

event selection (data)

Search for WIMPs in the fiducial volume: background estimate

- Background MC is generated using XMASS MC for each RI's decay mode and its activity.
- Optical parameters of LXe are traced with our ⁵⁷Co57 and ⁶⁰Co regular calibration.
- Same event selection is applied to background MC, which has the same livetime as the dataset.
- ~90% of remaining BG is of detector surface origin (not internal BG). => misreconstructed events.

Standard cut + R(T)<38cm+R(PE)<20cm (MC)

Measurement of ²¹⁰Pb in bulk copper by alpha counter

Not only the surface alpha events, but also bulk events can be observed! Sensitivity to ²¹⁰Pb is world best in screening (a few mBq/kg).

Low background alpha-counter XIA Ultra-Lo-1800

²¹⁰Pb in bulk oxygen free copper is measured for the first time

- Many oxygen free copper samples are measured. ²¹⁰Pb contamination is 17-40 mBq/kg.
- Spare plate for XMASS detector is also measured to be 26±11mBqkg, which is dominant background in XMASS WIMP analysis. This is consistent to alpha-like events measurement in XMASS detector.
- This is the first measurement of ²¹⁰Pb contamination in oxygen free copper (NIMA884 (2018)157-161)

Time evolution

Search for WIMPs in the fiducial volume: result

- Data is consistent with background expectation.
- The energy spectrum of the data was fitted with background MC plus WIMP MC in the energy range of 2-15keVee.
- Our exclusion limit at 90% CL is 2.2x10⁻⁴⁴cm² at 60GeV WIMPs mass.

PLB789 (2019) 45-53

Annual modulation search

Dark matter event rate is expected to modulate annually due to relative motion of the Earth around the Sun. Annual modulation claimed by DAMA/LIBRA phase1+phase2 with 11.9σ significance (1.04+1.13 ton•year, 13 cycles).

Search in XMASS (PRD97 (2018) 102006)

- >2year cycle data (1.82ton year) with low threshold (1.0keVee, =4.8keVnr)
- No particle ID (just like DAMA/LIBRA)

Detector stability

- We observed PE yield changes using Co57 source calibration.
 - Sudden drop at the power failure
 Purification work
 Continuous gas circulation.
- Run2 is more stable (Run1 is used in previous result (PLB2016)).
 (RMS of P.E. yield : 0.5%)
- Using the calibration and MC, estimated the detector stability.
 - The PE yield change is described by the change of absorption length.
 - RMS of deduced relative light
 yield : Run1 0.6%, Run2 0.3%

Standard WIMP search by modulation

- Leff uncertainty is taken into account.
- DAMA/LIBRA region is excluded by our measurement.

Model assumption

T:1year, t_0 =152.5day (fixed) V_0: 232.0 km/s V_{esc}: 544 km/s ρ_{dm} : 0.3 GeV/cm³ Lewin, Smith (1996)

Model independent results of annual modulation search

Power spectrum

- Phase t_0 : free parameter. 1–6 keV_{ee}
- Test statistics : $\Delta \chi^2$ of model independent analysis between null and periodic hypotheses.
- No significant period was found between 50 and 600 days.

Search for sub-GeV dark matter: motivation

It is difficult to search for WIMP with m<4GeV when we use scintillation light from recoiled nucleon. -> new approach to search for WIMP with m<4GeV

- Bremsstrahlung photon (PRL 118, 031803 (2017))
 - C. Kouvaris and J. Pradler, PRL 118, 031803 (2017)
- Electron by Migdal effect (JHEP03, 194 (2018))
 - M. Ibe et al., JHEP03, 194 (2018)

-> At this moment, XMASS use this Bremsstrahlung photon.

Search for sub-GeV dark matter: method

- Search for annual modulation signal using 2.8year data (3.5 calendar year)
- E>1keVee region is used.

Search for sub-GeV dark matter: result

- First search for bremsstrahlung photon emission
- Limit on σ<1.6x10⁻³⁹ cm² (for 0.5 GeV/c²).
- Multi-GeV region is also searched for using lower threshold. Limit on σ<2.9x10⁻⁴² cm² (for 8 GeV/c²)

PLB 795 (2019) 308-313

Search for WIMP-¹²⁹Xe Inelastic scattering: motivation

- WIMP-¹²⁹Xe Inelastic scattering would be direct evidence of spin dependent interaction mechanism (cf. natural abundance of ¹²⁹Xe: 26%).
- WIMP-¹²⁹Xe Inelastic scattering signal is nuclear recoil + 39.6keV gamma-ray from nuclear excitation.

•
$$\chi + {}^{129}Xe \rightarrow \chi + {}^{129}Xe^*$$

 ${}^{129}Xe^* \rightarrow {}^{129}Xe + \gamma (39.6 \text{keV})$

Search for WIMP-¹²⁹Xe Inelastic scattering: method

- In addition to standard cut, β -ray/ γ -ray particle ID using scintillation decay time profile is used to reduce background.
- Because both γ -ray and ¹²⁹Xe decay times are shorter than β -ray when the scintillation light yields are same, β -ray background can be removed. S/N ratio improves by factor 5.
- β-depleted/enriched sample are used to fit background and the signal is searched for.

Search for WIMP-¹²⁹Xe Inelastic scattering: result

- 800days data x 327kg are used (x48 larger exposure than XMASS (2014)).
- No significant signals are found.
- Limit on σ<4.1x10⁻³⁹ cm² for 200 GeV/c².
- This is most stringent limit in the SD inelastic search.

Hidden photon (HP) and Axion-like particle (ALP) dark mater search: motivation

HP (vector boson super-WIMPs)

Cross section (σ_{abs}) is:

$$\frac{\sigma_{\rm abs} v}{\sigma_{\rm photo}(\omega = m_V)c} \approx \frac{\alpha'}{\alpha}$$

 $(\alpha' : \text{the vector boson analogue to the fine})$ structure constant. v: velocity of the vector boson)

- Can be detected by absorption of the particle, which is similar to the photoelectric effect.
- The counting rate (S_{y}) in the detector is:

$$S_v \approx \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \left(\frac{\text{keV}}{m_V}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

(A: atomic mass, standard local matter density: 0.3GeV/cm³)

Pospelov et, al. Phys. Rev. D 78 115012 (2008)

ALP (pseudo-scalar boson super-WIMPs)

• Cross section (
$$\sigma_{abs}$$
) is:
 $\frac{\sigma_{abs}v}{\sigma_{photo}(\omega = m_a)c} \approx \frac{3m_a^2}{4\pi\alpha f_a^2}$

(v: velocity of the vector boson, m_a: pseudoscalar mass, f_a: dimensionful coupling constant.)

The counting rate in the detector is:

$$S_a \approx \frac{1.2 \times 10^{19}}{A} g_{aee}^2 \left(\frac{m_a}{\text{keV}}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

Hidden photon and axion-like particle search: method

- Dataset: Nov. 2013 Jul. 2016 (livetime 800days)
- Selection criteria: standard cut + fiducial volume cut (R<30cm) (327kg FV)
- Peak is expected in the NPE distribution.

Hidden photon and axion-like 💐 particle search: result

- Peak search with signal + background model by fitting at 440-2650NPE_{corr} (30-180keV γ).
- No candidates are found. Best constraint in 40-120keV/c² in both searches.

K.Kobayashi, XMASS, DSU 2019

summary

- XMASS has taken data for >5years with 832kg liquid xenon at Kamioka underground.
- > We have been searched for various kinds of dark matter:
 - > Standard WIMP (Phys. Lett. B789 (2019) 45-53)
 - > WIMP-Xe inelastic scattering (Astropart. Phys. 110 (2019) 1-7)
 - Low mass WIMP with annual modulation (Phys. Rev. D97 (2018) 102006)
 - Sub-GeV dark matter via bremsstrahlung (Phys. Lett. B795 (2019) 308-313)
 - Hidden photon and axion like particles (Phys. Lett. B787 (2018) 153-158)
- > We also have been studied other topics:
 - Solar KK-axion search (PTEP (2017) 103C01)
 - > ¹²⁴Xe 2v double electron capture (PTEP (2018) 053D03)
- Data taking has been completed in February 2019. Various kind of dark matter candidates /physics topics has been searched for! We also continue to study various kinds of physics using XMASS data.

backup

XMASS collaboration

ICRR, University of Tokyo	K. Abe, Y. C. Chen, K. Hiraide, K. Ichimura, S. Imaizumi, N. Kato, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, K. Sato, H. Sekiya, T. Suzuki, S. Tasaka, A. Takeda, M. Yamashita
Kavli IPMU, University of Tokyo	K. Martens, A. Mason, Y. Suzuki, B. Xu
Kobe University	K. Miuchi, Y. Takeuchi
Tokai University	K. Nishijima
Tokushima University	K. Fushimi
Yokohama National University	S. Nakamura
Miyagi University of Education	Y. Fukuda
Nihon University	H. Ogawa
ISEE, Nagoya University	Y. Itow, K. Kanzawa, R. Ishii
IBS	N.Y. Kim, Y. D. Kim
KRISS	Y. H. Kim, M. K. Lee, K. B. Lee

11 institutes, 36 collaborators

WIMP search in the fiducial volume

Location of RI	RI	Activity [mBq/detector]	Activity [mBq/detector]
		initial value of the fit	the best fit value
LXe	²²² Rn	-	8.53±0.16
	⁸⁵ Kr	-	0.25±0.04
	³⁹ Ar	-	0.65±0.04
	¹⁴ C	-	0.19±0.01
copper plate and ring	²¹⁰ Pb	-	(6.0±1.0)×10 ²
copper surface	²¹⁰ Pb	-	0.7±0.1
PMT quartz surface	²¹⁰ Pb	-	6.4±0.1
PMT	²³⁸ U	(1.5±0.2)×10 ³	(2.0±0.2)×10 ³
(except aluminum seal	²³² Th	(1.2±0.2)×10 ³	$(1.1\pm0.3)\times10^3$
and quartz surface)	⁶⁰ Co	(1.9±0.1)×10 ³	$(1.6\pm0.2)\times10^3$
	⁴⁰ K	(5.8±1.4)×10 ³	$(9.6 \pm 1.7) \times 10^3$
	²¹⁰ Pb	(1.3±0.6)×10 ⁵	$(2.2\pm0.7)\times10^5$
PMT aluminum seal	²³⁸ U	(1.5±0.4)×10 ³	(9.0±4.1)×10 ²
	²³⁵ U	(6.8±1.8)×10 ¹	$(4.1\pm1.8)\times10^{1}$
	²³² Th	(9.6±1.8)×10 ¹	(5.5±2.2)×10 ¹
	²¹⁰ Pb	(2.9±1.2)×10 ³	$(3.4\pm1.2)\times10^3$
Detector vessel,	²³⁸ U	(1.8±0.7)×10 ³	(9.0±7.6)×10 ²
holder and filler	²³² Th	(6.4±0.7)×10 ³	(6.4±3.2)×10 ³
	⁶⁰ Co	(2.3±0.1)×10 ²	$(3.0\pm1.9)\times10^2$
	²¹⁰ Pb	-	$(3.8+0.5)\times10^4$

Contents	Systematic error			
	2-15 keV _{ee}	15-30 keV _{ee}		
(1) Plate gap	+6.2/-22.8%	+1.9/-6.9%		
(2) Ring roughness	+6.6/-7.0%	+2.0/-2.1%		
(3) Copper reflectivity	+5.2/-0.0%	+2.5/-0.0%		
(4) Plate floating	+0.0/-4.6%	+0.0/-1.4%		
(5) PMT aluminum seal	+0.7/-0.7%	-		
(6) Reconstruction	+3.0/-6.2%	-		
(7) Timing response	+4.6/-8.5%	+0.4/-5.3%		
(8) Dead PMT	+10.3/-0.0%	+45.2/-0.0%		
(9) LXe property	+0.7/-6.7%	+1.5/-1.1%		