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See also NFW’s talks

CDM issues on small (subgalactic) scales

Tulin+18 after Oman+15
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McGaugh+16
MDAR

Lelli+15, BTFR

Core/cusp problem ↔ regularity vs. diversity problems.
Maybe baryonic effects. Important to clarify.

arXiv:1707.04256

Tulin+18 after Oman+15
Diversity problem

CDM issues on small (subgalactic) scales

Has motivated pure DM solutions: eg ULA, SIDM
→ probes on small scales important tests for all DM scenarios

NB: baryonic physics does matter anyway!

See also NFW’s talks



A test of dark matter-only structuring properties:
Dark subhalos

Proving/excluding the existence of dark matter subhalos?

* deep implication for dark matter scenarios + cosmology
* access to both DM candidate properties and primordial power spectrum

* independent test of “dark matter solutions” to the current small-scale issues

Looking for CDM subhalos in the Milky Way?

=> need for an accurate and dynamically consistent population model
(MW=strongly constrained system)



Looking for / impact of dark matter subhalos
1. Particle dark matter searches

Direct searches (WIMPs or axions) + solar neutrinos:
→ (large) fluctuations in local density (A. Ibarra’s talk)
→ streams in local velocity distribution (S. White’s talk)

Indirect searches:
→ boost in the annihilation rate (S. White’s talk)
→ impact on v-dependent signatures
→ individual sources e.g. in gamma-rays

Interaction with stars:
→ DM capture enhanced (A. Ibarra’s talk)

@Casey Reed/Penn State University

Pieri, JL+’11

@SDO/NASA

@KIPAC



Looking for / impact of dark matter subhalos
2. Gravitational searches

++ astrometry + lensing (micro/weak/strong) + pulsar timing + others

→ features in stellar streams, wakes in stellar density, lensing, etc.
[e.g. Calberg+, Erkal+, Belokurov+, Bushmann+, Ezaveh+, Penarrubia+, Feldmann+, Sandford+, Van Tilburg+, Dror+, etc.]

[NB1:  DM clustering also impacts microlensing limits on PBHs]
[NB2: different DM scenarios imply different clustering properties]

Gaia satellite @ ESA



Theoretical framework well defined:

* Inflation model → primordial power spectrum (model dependent)
* DM-baryons coupling properties (model dependent)
* Matter power spectrum (model-dependent cutoff)
* Press-Schechter and extensions → sub/halo mass function (z)
…

Modeling Galactic subhalos
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Eris, Guedes+11

Theoretical framework well defined:

* Inflation model → primordial power spectrum (model dependent)
* DM-baryons coupling properties (model dependent)
* Matter power spectrum (model-dependent cutoff)
* Press-Schechter and extensions → sub/halo mass function (z)
…
* Fully non-linear regime with cosmological simulations
=> Statistical properties of sub/halos + links with cosmology
…
* Impact of baryons from hydro-runs / adiabatic growth of disks

Via Lactea II, Diemand+08

Aquarius + baryons, Yurin+15

[see also Molitor+’15]

Aquarius, Springel+08

Modeling Galactic subhalos



Aquarius, Springel+08

PROBLEMS ARE

* Resolution limit: compare 105 M
sun

 with 10-10 M
sun

 (in DM-only)
* … getting worst in hydro-runs

…

* (Large uncertainties in baryonic physics)

…

* Modifications in cosmological inputs very expensive
…

* How is “Milky Way-like” defined?
* What’s special with “8 kpc” in a cosmological simulation? …. etc.

Via Lactea II, Diemand+08

Theoretical framework well defined:

* Inflation model → primordial power spectrum (model dependent)
* DM-baryons coupling properties (model dependent)
* Matter power spectrum (model-dependent cutoff)
* Press-Schechter and extensions → sub/halo mass function (z)
…
* Fully non-linear regime with cosmological simulations
=> Statistical properties of sub/halos + links with cosmology
…
* Impact of baryons from hydro-runs / adiabatic growth of disks

Modeling Galactic subhalos



MW terminal velocities, McMillan ‘11

Making predictions for DM searches?

The Milky Way a strongly constrained system!
(specific history + properties + observational data)

[F. Iocco’s talk]

Aquarius, Springel+08
MW masers, Reid+14

Gaia: Data Release 2 (DR2) @ESA

Via Lactea II, Diemand+08



MW terminal velocities, McMillan ‘11

Aquarius, Springel+08
MW masers, Reid+14

Gaia: Data Release 2 (DR2) @ESA

Via Lactea II, Diemand+08

Making predictions for DM searches?

The Milky Way a strongly constrained system!
(specific history + properties + observational data)

[F. Iocco’s talk]

Cannot be a mere rescaling!

[see also Molitor+’15]



Analytical model: defining the whole subhalo “phase space”

At MW formation, all (cosmological) properties factorize out



Step 1: compute tides induced by final MW halo
=> parameter space becomes intricate!

=> generic enough to be calibrated from simulations
=> subhalo mass fraction ~10% in range (10-5,10-2) M

h

(eg Diemand+08) fixes N
0

At MW formation, all (cosmological) properties factorize out

Analytical model: defining the whole subhalo “phase space”
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Step 2: compute tides induced by MW baryons
=> parameter space even more intricate

=> CANNOT be calibrated from simulations

Hard sphere argument:

Subhalos track the 
evolving DM 
distribution, even after 
disruption.

=> redistribution of DM 
from subhalos  to the 
smooth component.

=> only the final mass 
function knows about 
tidal stripping and 
disruption

Step 1: compute tides induced by final MW halo
=> parameter space becomes intricate!

=> generic enough to be calibrated from simulations
=> subhalo mass fraction ~10% in range (10-5,10-2) M

h

(eg Diemand+08) fixes N
0

At MW formation, all (cosmological) properties factorize out

Analytical model: defining the whole subhalo “phase space”



Input parameters (m
200

, r
200

, c
200

) are not physical observables!

Physical parameters are
→ scale parameters r

s
 and ρ

s

→ tidal mass m
t
 and extension r

t 
+ position

(m
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t  
< m
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,r

200
)

(m
200 

, r
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, c
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) + inner profile
→ set initial properties (flat background)

→ help fix scale parameters r
s
 and ρ

s

Predicted
[our model]

Kinematic constraints
[use McMillan’18 here]



Setting the subhalo cutoff mass scale (thermal DM)

Elastic collisions => thermal contact with relativistic plasma after 
freeze out

Thermal contact ceases
→  kinetic decoupling  => free streaming (x

k
=m/T

k
~102-104)

Matter-radiation eq. → DM grows density fluctuations larger than 
free streaming scale

=> Sets the minimal scale of DM halo 
NB: links with direct searches / interaction with stars

Production/annihilation => chemical+thermal equilibrium
→ Chemical decoupling => freeze out (x

f
=m/T

f
~20)

→ Relic abundance fixed
NB: links with indirect searches

Solve moments of 
Liouville-Boltzmann 

equation for coupled species

Annihilation →  / ← production

Elastic scattering

More details in Gaétan Facchinetti’s poster



Facchinetti+ (in prep)

Facchinetti+ (in prep)

Minimal halo mass from ~10-12M
sun

 (>1 TeV WIMPs) to ~10-3M
sun

 (<10 GeV WIMPs)
Like relic abundance, fixed by interaction properties of DM particles!

[see also Schwartz+, Hofmann+, Green+, Bringmann+, Boehm+, Gondolo+, etc.]

Setting the subhalo cutoff mass scale (thermal DM)
More details in Gaétan Facchinetti’s poster



Step 2: compute tides induced by MW baryons

Step 1: compute tides induced by final MW halo

At MW formation, all (cosmological) properties factorize out

Entangling the subhalo “phase space”: step 1



Global tidal effects

Solve EoM for test particle orbiting objects m and M (m<<M) in co-
rotating frame of frequency ω (King ‘62, Spitzer ‘87).
+ Demand force to vanish (Lagrange points L2, L3)

Point-like Jacobi tidal radius

Competition between global MW potential and internal subhalo potential → tidal radius

R                  x

Smooth Jacobi tidal radius

R vs Jacobi tidal radius rt in Aquarius
Springel+08

Binney&Tremaine ‘87, ’08

Extension to smooth systems



Step 2: compute tides induced by MW baryons

Step 1: compute tides induced by final MW halo

At MW formation, all (cosmological) properties factorize out

Entangling the subhalo “phase space”: step 2



Tides from stellar encounters and disk shocking

Tidal radius definition
[demand E(r)<0 after N crossings]

Differential definition (default)

Encounters with stars:
[Spitzer+,Gerhard+, Carr+, Zhao+, Green+, Gnedin+, Berezinsky+, etc.]

* impulse approximation during fly-by
=> strong in the very inner parts of MW

Disk shocking:
[Ostriker+,Weinberg+, Gnedin+, Berezinsky+, etc.]

* impulse approximation during crossing
* adiabatic invariance correction
=> always strong



Tidal disruption criterion (criteria?)

dm = m
200

-m
t
 given back to the smooth component

If circular orbit assumed,
Minimal concentration independent from mass!

Hayashi+03

Subhalo tidal mass

Disruption parameter ε
t

From past numerical studies
ε

t
~ 1

Disruption function



Tidal disruption criterion (criteria?)

dm = m
200

-m
t
 given back to the smooth component

Hayashi+03

Subhalo tidal mass

Disruption parameter ε
t

From past numerical studies
ε

t
~ 1

Disruption function

BUT ...

If mini-cores dense enough, fast orbits should be 
resilient down to x

t
<<1 … (adiabatic invariance)

van den Bosh+’17’18 => tidal disruption strongly 
overestimated in simulations (resolution + 
softening issue). Also Errani+17.

=> ε
t
<<1 most likely

If circular orbit assumed,
Minimal concentration independent from mass!



Impact of tidal disruption on number/mass density profiles

Subhalo number density profile, Stref PhD th. ‘18 Global subhalo mass density profile, Stref PhD th. ‘18

Sizable number density of tiny clumps expected locally! (~µpc size)
But on average, contribute a tiny fraction of the local density (~1 %)

Subhalo
mass density profile

Hidden above but important:
mass + concentration pdfs have become spatial-dependent!

Constrained Galactic mass model from McMillan’18 assumed [NFW+bulge+gas/stellar thin/thick disks]

[mass function is now
spatial dependent!]

Subhalo
number density profile



Amplification of annihilation rate in the Milky Way

Stref PhD. th ‘18

Minimal subhalo mass matters for α >1.9
(always in the central regions due to effective mass index => local fluctuations suppressed)

[see also Silk&Stebbins’93, Bergström+’98, JL+07, etc.]

Annihilation profile + local/integrated boost, Stref+17

Antiproton flux

DM annihilation profile
[consistent with kinematics!]

Line-of-sight integral
(J-factor – gamma-rays)

Angle from GC [degree]



Summary

* Analytical models of subhalos complementary to cosmological simulations
+ no resolution limit and fast
+ can easily probe different cosmologies
+ can be made consistent with dynamical constraints (e.g. the MW)
+ can apply to any DM candidate
- have to rely on simplifying assumptions (e.g. spherical symmetry)

* Other analytical models on the market:
- Berezinsky+: fully analytical (even density profiles), include baryons – qualitative estimates
- van den Bosch+, Ando+, Hiroshima+: accretion+stripping, mass function (z), no baryons – EG gamma-rays
- etc.

* Milky Way a perfect place to probe DM properties on small scales!
→ a strongly constrained system (global potential + baryons)
→ theoretical + dynamical self-consistence of DM distribution very important (smooth+subhalo components)

* Montpellier model (Facchinetti, Lavalle, Stref et al.) predicts properties of MW subhalo population
- includes tidal stripping from both DM + baryons
- consistent with MW kinematic constraints
- qualitatively consistent with simulations results in relevant mass range
- predictions for a series of observables: gamma-rays, antimatter cosmic rays, etc.

* Perspectives
- full evolution from dark ages
- detailed investigation of subhalo interactions with stars (DM capture)
- application to PBHs



Backup



The dark halo: smooth vs subhalo component

Overall profile constrained by non-linear theory: NFW, Einasto +/- cores
++++

**** Strongly constrained by MW kinematic data ****

Density profiles for DM and baryons
From McMillan’11-’17

Stref PhD th. ‘18

Series of kinematic constraints
on baryons+DM mass models

++ will improve with Gaia ++

McMillan’11



Tidal disruption criterion (criteria?)

dm = m
200

-m
t
 given back to the smooth component

Minimal concentration independent from mass!

Minimal concentration vs position, Stref PhD th. ‘18 => mean concentration gets spatial-dependent
(see also Pieri+11, Moline+15)

Subhalo tidal mass

Disruption free parameter ε
t

Disruption function

But …

What about adiabatic invariants?
→ If mini-cores dense enough, fast orbits should be 
resilient down to x

t
<<1 …

Recent work by van den Bosh+’17’18 suggests 
tidal disruption strongly overestimated in 
simulations. See also Errani+17.

NB: again a resolution issue → analytical 
arguments may catch on.



Post-tides properties

Concentration function cut from the left => spatial-dependent mass index!

Effective local mass index steeper than 2!

Modified local mass function, Stref+17



Evolution of species in the Early Universe



Closest visible object



Subhalo eccentricity distribution

Facchinetti+, in prep



Boost factors in context

Bergström’09

Boost factor depends on integration volume!

See also Silk & Stebbins’93, Begström+99, 
Lavalle+07-08



J factors! (at last)

Stref PhD th ‘18



Kinetic decoupling, free streaming scale, and small-scale structures

WDM

Galactic scale

CDM

Bose+16

Vogelsberger+16 – ETHOS



Searches for thermal dark matter

Elastic scattering

Annihilation / production

* elastic or inelastic scattering
→ nuclear recoils at underground experiments
=> direct searches

→ scattering with astrophysical objects
=> stellar physics
=> neutrinos from capture+annihilation in stars
=> indirect searches

* Beware velocity dependence
(pseudo-scalar exchange v-suppressed;
scalar exchange is not)

* Production at colliders (model dependent)
=> collider searches

* Annihilation/decay rate potentially large in 
dense DM regions: centers of halos + CMB
=> indirect searches

* Beware velocity dependence
(scalar exchange between fermions v-suppressed;
pseudo-scalar exchange is not)



Tides from stellar encounters and disk shocking

Tidal radius definition
[demand E(r)<0]

Differential definition (default)

Integrated definition

Fit from D’Onghia+10

Encounters with stars:
(Ostriker+,Weinberg+, Gnedin+,80-00, Berezinsky+03)
* impulse approximation during fly-by
=> strong in the very inner parts of MW

Disk shocking:
* impulse approximation during crossing
* adiabatic invariance correction
=> always strong
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