Big-bang nucleosynthesis and Leptogenesis in CMSSM

SATO, Joe (Saitama University) 2019/July/18

T. Jittoh, M. Koike , M, Kubo, Y. Konishi, S. Ohta, , T. Shimomura, K. Sugai, Y. Takanishi, M. Yamanaka, K.Yazaki

- PRD 73 (2006) 055009, 76 (2007) 125023, 78 (2008) 055007, 82 (2010) 115030, 84 (2011) 035008, D
 86 (2012) 095024, D89 (2014) 7, 075006,
- PRD97(2018)11,115013

1.Introduction

1. Introduction

At this moment

- Higgs Doublet was found
- ☑ No New Physics @ LHC
- ☑ No New (Quark) Flavor Violation

SM works quite well

Dark Matter candidate

Go beyond SM

- ☑ Baryon Asymmetry
- ☑ Lepton Flavor Violation among Neutrino
- Lithium Problem(s) in Big-Bang Nucleosynthesis

1. Introduction

At this moment

- Higgs Doublet was found
- ☑ No New Physics @ LHC
- ☑ No New (Quark) Flavor Violation

Go beyond SM

SM works quite well

- Dark Matter candidate
- Baryon Asymmetry
- Lepton Flavor Violation among Neutrino
- Lithium Problem(s) in Big-Bang Nucleosynthesis

Constrained minimal SUSY standard model (CMSSM) with RH- neutrinos can solve them!? Keeping the good feature of SM

2.Clues for BSM

2.Clues for BSM

2.1 DM Abundance

Neutral Stable Particle(s) required:

$$0.1126 \leq \frac{m_{\tilde{\chi}^0_1} n h^2}{\rho_c} \leq 0.1246 \quad (3\sigma \text{ C.L.})$$
[PDG2016]

2.2 Baryon Asymmetry in the universe

Our universe is made from only matter.

$$\Omega_b h^2 = 0.0223 \pm 0.0002 \ (1\sigma)$$

[PDG2016]

Origin(s) of asymmetry is required

2.3 Li problem(s)

Theoretical prediction ($4.15^{+0.49}_{-0.45}$)×10⁻¹⁰

A. Coc, et al., astrophys. J. 600, 544(2004)

Observation ($1.26^{+0.29}_{-0.24}$)×10⁻¹⁰

P. Bonifacio, et al., astro-ph/0610245

Predicted⁷Li abundance \neq observed⁷Li abundance

¹Li problem

 $^{6}\mathrm{Li/H}{\sim}~6~\times~10^{-12}$

1000 times higher than SBBN ? Steffen et al 2012

Lithium 6 Problem

Or

 ${}^{6}\mathrm{Li/H}{=}~(0.85\pm4.33)\times10^{-12}$

Upper bound ? Lind et al 2013

2.4 Neutrino Oscillation : Lepton Flavor Violation

"For the greatest benefit to mankind" alfred Wohel

2015 NOBEL PRIZE IN PHYSICS

Takaaki Kajita Arthur B. McDonald

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of **neutrino oscillations**, which shows that **neutrinos have mass**". http://www.nobelprize.org/

T Ve T

Lepton mixing and Mass differene

$$U_{\rm MNS} = \widehat{U} \operatorname{diag} \left(1, e^{i\alpha}, e^{i\beta} \right) ,$$

$$\widehat{U} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $\Delta m_{12}^2 = (6.93 - 7.96) \times 10^{-5} (\text{eV}^2), \quad \Delta m_{23}^2 = (2.42 - 2.66) \times 10^{-3} (\text{eV}^2),$ $\sin^2 \theta_{12} = (0.250 - 0.354), \quad \sin^2 \theta_{23} = (0.381 - 0.615), \quad \sin^2 \theta_{13} = (0.0190 - 0.0240)$

$$s_{23} = \sqrt{0.441}$$
, $s_{13} = \sqrt{0.02166}$, $s_{12} = \sqrt{0.306}$,
 $\alpha = 0$, $\beta = 0$, $\delta = 261^{\circ}$.

3.Solution by CMSSM with RH v

3.1 DM abundance and LHC result

Neutralino ~ Bino-like DM

Coannihilation region Griest, Seckel

DM abundance can be explained Coannihilation region

DM and Stau : degenerate in mass

DM and Stau pair-annihilate at decoupling from thermal history to give appropriate abundance

 $m_{\chi} \sim 400 {\rm GeV}$

 Imposing 125GeV Higgs, muon g-2 etc, tight degenerasy,

 $\delta m \equiv m_{\tilde{\tau}} - m_{\tilde{\chi}} < m_{\tau}$

[L. Aparicio, D. Cerdeno, L. Ibanez, JHEP(2012)] [M. Citron, J. Ellis, F.Luo , et al, PRD87(2013)]

Very fortunately

Stau is long-lived at $\delta m < m_{\tau}$ since 2-body decay is kinematically prohibited

[T. Jittoh, J. S T. Shimomura, M.Yamanaka, PRD73 (2006)] Can not decay into two body with lepton flavor conservation

 $\tilde{\tau}$

Phase space suppression Long-lived particle Solution to Li Problem Coming back later

long-lived stau in the coannihilation scenario

3.2 Lepton Mixing

Seesaw mechanism

$$\begin{split} \mathscr{W}_{l} &= \widehat{E}_{\alpha}^{c} \left(Y_{\mathrm{E}}\right)_{\alpha\beta} \widehat{L}_{\beta} \cdot \widehat{H}_{d} + \lambda_{\beta i} \widehat{L}_{\beta} \cdot \widehat{H}_{u} \widehat{N}_{i}^{c} - \frac{1}{2} \left(M_{\mathrm{N}}\right)_{ij} \widehat{N}_{i}^{c} \widehat{N}_{j}^{c} \\ \widehat{L}_{\alpha} \text{ and } \widehat{E}_{\alpha}^{c} \left(\alpha = e, \mu, \tau\right) \left(Y_{E}\right)_{\alpha\beta} = y_{\alpha} \delta_{\alpha\beta} \text{ is assumed} \\ & \text{SU(2) doublet and singlet leptons} \\ \widehat{N}_{i}^{c} \left(i = 1, 2, 3\right) & \text{Right-handed neutrinos} \end{split}$$

Below RH neutrino scale

$$\begin{aligned} \mathscr{L}_{m}^{\nu} &= -\frac{1}{2} \nu_{L\alpha} (m_{\nu})_{\alpha\beta} \nu_{L\beta} + h.c. ,\\ (m_{\nu})_{\alpha\beta} &= v_{u}^{2} (\lambda_{\nu})_{\alpha i} M_{i}^{-1} (\lambda_{\nu})_{i\beta} ,\\ (m_{\nu}) &= U_{\text{MNS}}^{*} D_{m_{\nu}} U^{\dagger}_{\text{MNS}} \quad D_{m_{\nu}} = \text{diag}(m_{\nu_{1}}, m_{\nu_{2}}, m_{\nu_{3}}) \\ \text{Tiny masses and lepton mixing} \end{aligned}$$

Lepton mixing and Mass differene

$$U_{\rm MNS} = \widehat{U} \operatorname{diag} \left(1, e^{i\alpha}, e^{i\beta} \right) ,$$

$$\widehat{U} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 $\Delta m_{12}^2 = (6.93 - 7.96) \times 10^{-5} (\text{eV}^2), \quad \Delta m_{23}^2 = (2.42 - 2.66) \times 10^{-3} (\text{eV}^2),$ $\sin^2 \theta_{12} = (0.250 - 0.354), \quad \sin^2 \theta_{23} = (0.381 - 0.615), \quad \sin^2 \theta_{13} = (0.0190 - 0.0240)$

In this talk we will fix the parameters

$$s_{23} = \sqrt{0.441}, \ s_{13} = \sqrt{0.02166}, \ s_{12} = \sqrt{0.306}, \alpha = 0, \ \beta = 0, \ \delta = 261^{\circ}.$$
 $m_{\nu_1} = 0.001 \ (eV)$

There remains degrees of freedom in the parameters

$$\lambda_{\nu} = \frac{1}{v_u} U_{\rm MNS}^* \sqrt{\mathcal{D}_{m_{\nu}}} R \sqrt{M} , \qquad \qquad \text{Casas \& Ibarra}$$

$$R = \begin{pmatrix} \widetilde{c}_{13}\widetilde{c}_{12} & \widetilde{c}_{13}\widetilde{s}_{12} & \widetilde{s}_{13} \\ -\widetilde{c}_{23}\widetilde{s}_{12} & \widetilde{c}_{23}\widetilde{c}_{12} - \widetilde{s}_{23}\widetilde{s}_{13}\widetilde{s}_{12} & \widetilde{s}_{23}\widetilde{c}_{13} \\ \widetilde{s}_{23}\widetilde{s}_{12} - \widetilde{c}_{23}\widetilde{s}_{13}\widetilde{c}_{12} & -\widetilde{s}_{23}\widetilde{c}_{12} - \widetilde{c}_{23}\widetilde{s}_{13}\widetilde{s}_{12} & \widetilde{c}_{23}\widetilde{c}_{13} \end{pmatrix}$$

 $\left(\begin{array}{c} \widetilde{c}_{ij} = \cos z_{ij} \\ z_{ij} = x_{ij} + \sqrt{-1} y_{ij} \\ \end{array} \right)$ $\begin{array}{c} \widetilde{c}_{ij} = x_{ij} + \sqrt{-1} y_{ij} \\ \end{array}$ $\begin{array}{c} 6 \text{ parameters+} \end{array}$

R is a complex orthogonal matrix, $R^{\mathbf{T}}R = 1$

3.3 Baryon asymmetry

Leptogenesis Fukugita&Yanagida

Generate Lepton asymmetry and Convert to Baryon number

$$\varepsilon_{\alpha}^{i} \equiv \frac{\Gamma(N_{i} \to \ell_{\alpha}\phi) - \Gamma(N_{i} \to \bar{\ell}_{\alpha}\phi^{\dagger})}{\Gamma(N_{i} \to \ell_{\alpha}\phi) + \Gamma(N_{i} \to \bar{\ell}_{\alpha}\phi^{\dagger})}$$

$$(a) \quad \varepsilon_{\alpha}^{i}(\text{vertex}) = -\frac{1}{8\pi} \sum_{j} \frac{M_{j}}{M_{i}} \log \left[1 + \frac{M_{i}^{2}}{M_{j}^{2}}\right] \frac{\Im\left[\left(\lambda^{\dagger}\lambda\right)_{ji}\lambda_{\beta i}^{*}\lambda_{\alpha i}\right]}{(\lambda^{\dagger}\lambda)_{ii}}$$

$$(b) \quad \varepsilon_{\alpha}^{i}(\text{wave}) = -\frac{2}{8\pi} \sum_{j} \frac{M_{i}}{M_{j}^{2} - M_{i}^{2}} \frac{\Im\left[\left(M_{j}(\lambda^{\dagger}\lambda)_{ji} + M_{i}(\lambda^{\dagger}\lambda)_{ij}\right]\lambda_{\beta i}^{*}\lambda_{\alpha i}\right]}{(\lambda^{\dagger}\lambda)_{ii}}$$

$$Y_B = (8/23)Y_{B-L} \implies 2.414 \times 10^{-10} \leq |Y_{B-L}| \leq 2.561 \times 10^{-10}$$
Lain&Shaposhnikov

 $\Omega_b h^2 = 0.0223 \pm 0.0002 \ (1\sigma)$

Flavored Leptogenesis

3.3 Baryon asymmetry

Leptogenesis Fukugita&Yanagida

Generate Lepton asymmetry and Convert to Baryon number

Flavored Leptogenesis

3.4 Li problem(s) and a solution by long-lived stau

Predicted⁷Li abundance \neq observed⁷Li abundance

A. Coc, et al., astrophys. J. 600, 544(2004) $(4.15 + 0.49 - 0.45) \times 10^{-10}$ $(1.26 + 0.29 - 0.24) \times 10^{-10}$ P. Bonifacio, et al., astro-ph/0610245 ⁷Li problem

 $\label{eq:constraint} ^{6}\mathrm{Li/H} \sim \ 6 \ \times \ 10^{-12} \qquad \begin{array}{c} 1000 \text{ times higher than SBBN ?} \\ \text{Steffen et al 2012} \\ \text{Or} \\ ^{6}\mathrm{Li/H} = \ (0.85 \pm 4.33) \ \times \ 10^{-12} \\ \text{Lind et al 2013} \end{array} \qquad \begin{array}{c} \text{Lithium 6 Problem (?)} \\ \text{Upper bound ?} \\ \text{Lind et al 2013} \end{array}$

Solving the Li problem with "stau"

$$\widetilde{\ell}_1 = \sum_{f=e,\mu,\tau} C_f \widetilde{f}_{\cdot} \quad C_{\tau} \sim 1 \gg C_e, C_{\mu} \quad \widetilde{f} = \cos \theta_f \widetilde{f}_L + \sin \theta_f \widetilde{f}_R$$

Key ingredient for solving the ⁷Li problem

Negative-charged stau can form a bound state with nuclei

New processes

- Internal conversion in the bound state
- Stau catalyzed fusion
- Spallation process of nucleus in the bound state

Closeness between stau and nucleus

Overlap of the wave function : \underline{UP}

Interaction rate of hadronic current : UP

 $\tilde{\tau}^+$ does not form a bound state

No cancellation processes

Internal conversion rate

The lifetime of the stau-nucleus bound state

$$\tau_{\rm IC} = \frac{1}{|\psi|^2 \cdot (\sigma v)}$$

$$|\psi|^2 = \frac{1}{\pi a_{\text{nucl}}^3}$$

 $\left(\begin{array}{c} \text{nuclear radius} \\ a_{\text{nucl}} = (1.2 \times A^{1/3}) \end{array}\right)$

 \diamond (σv) is evaluated by using <u>*ft*-value</u>

$$(\sigma v) \propto (ft\text{-}value)^{-1}$$

ft-value of each processes

⁷Be \rightarrow ⁷Li • • • $ft = 10^{3.3}$ sec (experimental value) ⁷Li \rightarrow ⁷He • • • similar to ⁷Be \rightarrow ⁷Li (no experimental value)

Li destruction chain with internal conversion

Stau catalyzed fusion

[M. Pospelov, PRL. 98 (2007)]

Ineffective for reducing ⁷Li and ⁷Be

 \therefore stau can not weaken the barrieres of Li³⁺ and Be⁴⁺ sufficiently

Stau catalyzed fusion

Catalyzed BBN cause over production of ⁶Li

Constraint on stau life time Or solution to Li6

4 He spallation process PRD 84

Reaction rate $\Gamma((\tilde{\tau}^{4}\text{He}) \rightarrow \tilde{\chi}_{1}^{0}\nu_{\tau} \text{tn}) = |\psi|^{2} \cdot \sigma v_{\text{tn}}$

Upper bound for lifetime from not to produce much t/d

Favored parameter space in MSSM

Mass differencee $\delta m < m_{\mu}$

Lifetime

$$\tau_{\tilde{l}}(\tilde{l}_1 \to \tilde{\chi}_1^0 + e) \simeq \frac{8\pi}{g^2 \tan^2 \theta_W} \frac{m_{\tilde{l}}}{(\delta m)^2} \frac{1}{\cos^2 \theta_e + 4 \sin^2 \theta_e} \frac{1}{C_e^2}$$

$$1700 \text{ s} \leq \tau_{\tilde{\ell}} \leq 5000 \text{ s} \Leftrightarrow 2.0 \times 10^{-10} \leq C_e \leq 3.5 \times 10^{-10} \qquad \text{Li7 Problem}$$

$$3500 \text{ s} \leq \tau_{\tilde{\ell}} \leq 5000 \text{ s} \Leftrightarrow 2.0 \times 10^{-10} \leq C_e \leq 2.5 \times 10^{-10} \qquad \text{Li6\&7 Problem}$$

$$\delta m = 10 \text{ MeV and } \sin \theta_e = 0.6$$

In addition, to have enough slepton $C_{\mu} < \mathcal{O}(10^{-5})$

Number density of long-lived slepton

$$\begin{split} &\widetilde{\ell}_1^{\pm}\gamma\leftrightarrow\widetilde{\chi}_1^0\tau^{\pm}, \quad \widetilde{\ell}_1^{\pm}\gamma\leftrightarrow\widetilde{\chi}_1^0\mu^{\pm}, \\ &\widetilde{\ell}_1^{\pm}\tau^{\mp}\leftrightarrow\widetilde{\chi}_1^0\gamma, \quad \widetilde{\ell}_1^{\pm}\mu^{\mp}\leftrightarrow\widetilde{\chi}_1^0\gamma, \quad \widetilde{\ell}_1^{\pm}e^{\mp}\leftrightarrow\widetilde{\chi}_1^0\gamma \end{split}$$

Should be suppressed

4. Parameter Search

4. Parameter Search

Free parameters

From CMSSM

 $m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sign}(\mu)$

Almost fixed by DM and lifetime of the lightest slepton In addition to Higgs mass ~ 125 GeV Here we assume for simplicity

$$m_{\chi} = 380 \,{
m GeV}, \ \delta m = 10 \,{
m MeV}$$

 $m_{1/2} = 887.0 \,({
m GeV}) \ , \ A_0 = -3090 \,({
m GeV})$
 $m_0 \approx [707.3, 707.4] \,({
m GeV})$ With the assumption $\tan \beta = 25$

From neutrino physics

Free parameters

From RH neutrino

$$\mathcal{W}_{l} = \widehat{E}_{\alpha}^{c} (Y_{\rm E})_{\alpha\beta} \widehat{L}_{\beta} \cdot \widehat{H}_{d} + \lambda_{\beta i} \widehat{L}_{\beta} \cdot \widehat{H}_{u} \widehat{N}_{i}^{c} - \frac{1}{2} (M_{\rm N})_{ij} \widehat{N}_{i}^{c} \widehat{N}_{j}^{c}$$
With Casas Ibarra parametrization $\lambda_{\nu} = \frac{1}{v_{u}} U_{\rm MNS}^{*} \sqrt{\mathcal{D}_{m_{\nu}}} R \sqrt{M}$

$$R = \begin{pmatrix} \widetilde{c}_{13} \widetilde{c}_{12} & \widetilde{c}_{13} \widetilde{s}_{12} & \widetilde{s}_{13} \\ -\widetilde{c}_{23} \widetilde{s}_{12} & \widetilde{c}_{23} \widetilde{c}_{12} - \widetilde{s}_{23} \widetilde{s}_{13} \widetilde{s}_{12} & \widetilde{s}_{23} \widetilde{c}_{13} \end{pmatrix}$$

$$\widetilde{s}_{23} \widetilde{s}_{12} - \widetilde{c}_{23} \widetilde{s}_{13} \widetilde{c}_{12} - \widetilde{s}_{23} \widetilde{c}_{12} - \widetilde{c}_{23} \widetilde{s}_{13} \widetilde{s}_{12} & \widetilde{c}_{23} \widetilde{c}_{13} \end{pmatrix}$$

3 complex angles = 6 parameters to be searched M_i (i = 1, 2, 3) (RH ν masses) **3** mass parameters

1.
$$M_2 = 2 \times M_1, M_3 = 40 \times M_1$$

 M_1 is free parameter

2.
$$M_2 = 4 \times M_1, M_3 = 40 \times M_1$$

3.
$$M_2 = 10 \times M_1, M_3 = 40 \times M_1$$

 $m_{\nu_1} = 0.001 \,\,({\rm eV})$ Normal Hierarchy assumed

For Numerical Analysis

RGE : SPheno DM : micrOMEGAs Leptogenesis : Original Code by Yamanaka

5.Result

5. Result

Dark Matter & related

Kind of Input

 $\Omega h^2 = 0.115 \iff m_{\chi} = 380 \text{GeV}, \ \delta m = 10 \text{MeV}$

Spin independent Cross section : satisfy LUX

$$\sigma^{\rm SI} = 1.05 \times 10^{-47} \ {\rm cm}^2$$

Other predictions from MSSM

$$\delta a_{\mu} = 3.537 \times 10^{-10}$$

Putting theoretical value to 3 sigma

All the other SM processes are consistent with experimental bounds too

SUSY Mass Spectrum

particle	mass (GeV)	mixing
\tilde{d}_1	1.453×10^3	$\tilde{d}_1 \simeq (0.9910 - 0.0000i)\tilde{b}_L + (0.1289 - 0.0000i)\tilde{b}_R$
\tilde{d}_2	1.696×10^3	$\tilde{d}_2 \simeq (0.9916 - 0.0000i)\tilde{b}_R + (-0.1286 + 0.0000i)\tilde{b}_L$
$ ilde{d}_3$	1.850×10^3	$\tilde{d}_3 \simeq (0.9997 + 0.0189i)\tilde{s}_R + (0.0068 + 0.0001i)\tilde{s}_L$
$ ilde{d}_4$	1.851×10^3	$\tilde{d}_4 \simeq (-0.9263 - 0.3766i)\tilde{d}_R + (-0.0003 - 0.0001i)\tilde{d}_L$
\tilde{d}_5	1.925×10^3	$\tilde{d}_5 \simeq (-0.9835 - 0.016i)\tilde{s}_L + (0.1664 - 0.0588i)\tilde{d}_L$
$ ilde{d}_6$	1.926×10^3	$\tilde{d}_6 \simeq (0.8698 - 0.4605i)\tilde{d}_L + (0.1752 - 0.0229i)\tilde{s}_L$
\tilde{u}_1	8.775×10^2	$\tilde{u_1} \simeq (0.9604 - 0.0000i)\tilde{t_R} + (0.2749 - 0.0000i)\tilde{t_L}$
\tilde{u}_2	1.502×10^3	$\tilde{u}_2 \simeq (-0.9603 + 0.0000i)\tilde{t}_L + (0.2784 - 0.0000i)\tilde{t}_R$
$ ilde{u}_3$	1.858×10^3	$\tilde{u}_3 \simeq (0.9999 - 0.0001i)\tilde{c}_R + (0.0103 + 0.0000i)\tilde{c}_L$
\tilde{u}_4	1.858×10^3	$\tilde{u}_4 \simeq (0.2862 + 0.9581i)\tilde{u}_R + (0.0000 + 0.0000i)\tilde{u}_L$
\tilde{u}_5	1.924×10^3	$\tilde{u}_5 \simeq (0.9958 + 0.0045i)\tilde{c}_L + (0.0659 + 0.0618i)\tilde{u}_L$
\tilde{u}_{6}	1.924×10^3	$\tilde{u}_6 \simeq (-0.7492 + 0.6560i)\tilde{u}_L + (0.0092 - 0.0899i)\tilde{c}_L$
\tilde{l}_1	3.796×10^2	$\tilde{l}_1 \simeq (-0.9852 + 0.0000i)\tilde{\tau}_R + (-0.1710 - 0.0000i)\tilde{\tau}_L$
$ ilde{l}_2$	7.806×10^2	$\tilde{l}_2 \simeq (-0.6766 - 0.7360i)\tilde{\mu}_R + (-0.0141 - 0.0154i)\tilde{\mu}_L$
\widetilde{l}_3	7.817×10^2	$\tilde{l}_3 \simeq (-0.6639 + 0.7477i)\tilde{e}_R + (0.0000 + 0.7605i)\tilde{e}_L$
\widetilde{l}_4	7.980×10^2	$\tilde{l}_4 \simeq (0.9852 + 0.0000i)\tilde{\tau}_L + (-0.1710 - 0.0000i)\tilde{\tau}_R$
\tilde{l}_5	9.215×10^2	$\tilde{l_5} \simeq (0.6681 + 0.7311i)\tilde{\mu_L} + (0.1077 - 0.0835i)\tilde{e_L}$
\tilde{l}_6	9.219×10^2	$\tilde{l_6} \simeq (-0.7833 + 0.6064i)\tilde{e_L} + (0.0919 + 0.1006i)\tilde{\mu_L}$
\tilde{g}	1.986×10^3	

On the edge

We will observe them soon !!

Neutrino parameters

Also input. We tune the parameter to fit them first.

Leptgenesis & Li ploblem(s)

There is a tension between them

 $\mathscr{W}_{l} = \widehat{E}_{\alpha}^{c} (Y_{\mathrm{E}})_{\alpha\beta} \,\widehat{L}_{\beta} \cdot \widehat{H}_{d} + \lambda_{\beta i} \widehat{L}_{\beta} \cdot \widehat{H}_{u} \widehat{N}_{i}^{c} - \frac{1}{2} (M_{\mathrm{N}})_{ij} \,\widehat{N}_{i}^{c} \widehat{N}_{j}^{c}$ $(m_{\nu})_{\alpha\beta} = v_{u}^{2} (\lambda_{\nu})_{\alpha i} M_{i}^{-1} (\lambda_{\nu})_{i\beta}$

Leptogenesis requires significant size of $~\lambda_{lpha i}$

Li ploblems require quite small slepton mixings to make lifetime long enough

 $C_lpha \propto \lambda^2$

Due to RGE effect

RH neutrino cannot be too massive

Very narrow parameter region

Lifetime of the lightest slepton

FIG. 2: The lightest slepton lifetime as a function of x_{23} . The blue and green band corresponds to the lifetime required to solve the ⁷Li problem only and both the ⁷Li and ⁶Li problems, respectively.

At a large M1 solution vanished

RH nu mass range

- 1. case of $M_2 = 2 \times M_1$, $M_3 = 40 \times M_1$
 - $\bullet\,$ Taking into account $^6\mathrm{Li}$ and $^7\mathrm{Li}$ problem

$$7.8 \times 10^8 \le M_1 \le 7.0 \times 10^{10} (\text{GeV})$$
.

• Taking into account only ⁷Li problem

$$7.8 \times 10^8 \le M_1 \le 1.0 \times 10^{11} \; (\text{GeV})$$

Thick Line : Li 6&7

Thin line: only Li 7

Predictions for CLFV experiment

Prediction is just below the current limit with Li6+7

In our scenario, it is natural not observe any CLFV.

We will observe it soon

Other CLFV Process

With muon, we will observe soon

Other CLFV Process

With tau, it is impossible to observe within our lifetime

6. Summary

6.Summary

Constrained minimal SUSY standard model (CMSSM) + RH nu with 4 ✓ requirement

- ☑ 4 requirement
 - Dark matter relic abundance
 - Neutrino Physics
 - **Leptogenesis**
 - **Lithium Problem(s)**

Li Problem vs Leptogenesis Small LFV vs Large LFV

- ☑ Very stringent Predictions
 - SUSY particles will soon be observed
 - **CLFV** is around current experiment bound
 - DM direct detection in near future

どこのパラメーター領域に注目すべきか?

[J. Ellis, et al, PRD87 (2013)]

☑ 125GeV Higgs、muon g-2 なども 含めると尤もらしい領域は?

 $\delta m < m_{\tau}$

 $\delta m = m_{\tilde{\tau}_R} - m_{\tilde{\chi}}$ 暗黒物質とスタウの質量差

Process	Bound	Sensitivity
$\mu \to e \gamma$	4.2×10^{-13} [87]	6×10^{-14} [88]
$\mu \rightarrow 3e$	1.0×10^{-12} [89]	$1 \times 10^{-16} \; [90]$
$\tau \to \mu \gamma$	4.4×10^{-8} [91]	$1 \times 10^{-9} \; [92]$
$\tau \to 3\mu$	2.1×10^{-8} [93]	$1 \times 10^{-9} \; [92]$

リチウム7問題

☑ Prediction $^{7}\text{Li/H} = (4.15^{+0.49}_{-0.45}) \times 10^{-10}$

☑ Observation $^{7}\text{Li/H} = (1.26^{+0.29}_{-0.24}) \times 10^{-10}$

☑ Discrepancy:⁷Li problem

No solutions by modifying nucleus reaction rates

☑ Find mechanism to reduce both⁷Li and⁷Be at the BBN epoch

☑ req4: Stau (and DM(Lightest Neutralino)) mass

$339[\text{GeV}] \le m_{\tilde{\tau}} \le 450[\text{GeV}]$

LHC bound

Sufficient bound states= Enough Stau at BBN

Strongly correlated with Number density of DM

DM abundance (fixed) = number density × mass

Direct measurement at LHC

[T. Jittoh, K. Kohri, M. Koike, J. S, T. Shimomura, M.Yamanaka, PRD82(2010)]

Internal conversion for solving the lithium7 problem

[T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, MY, PRD76 (2007)]

Very fortunately

☑ Stau is long-lived at $\delta m < m_{\tau}$ since 2-body decay is kinematically prohibited

[T. Jittoh, J. Sato, T. Shimomura, MY, PRD73 (2006)]

 $\square \delta m > m_{\tau}$ のCMSSMを調べるだけでは見落とす現象や制限あり

☑ CMSSMの確立に向け、実現可能性大の領域を丁寧に洗い直すべき

研究目的:新たな現象、それに伴う特典・制限を含め、 現実的CMSSMの検証可能性を真摯に解析