First results from the CRESST-III low-mass Dark Matter detector

Antonio D'Addabbo

Gran Sasso Science Institute and Laboratori Nazionali del Gran Sasso - INFN The 15th International Conference on the

DARK SIDE OF THE UNIVERSE

July 16th, 2019 - Buenos Aires

The dark matter problem

After 80 years...

• Non-baryonic

Height of acoustic peaks in the CMB Power spectrum of density fluctuations Primordial nucleosynthesis

- Cold (non-relativistic)
 Structure formation
- Electrically neutral
- Interacts via gravity and (maybe) some sub-weak scale force

• STILL HERE!

Stable (or extremely long-lived)

The hunt for dark matter

Direct search

Cryogenic Rare Event Search with Superconducting Thermometers

What?

Direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors operated at ~15 mK

Dark matter particles scatter

- off nuclei
- elastically
- coherently: ~A²

Cryogenic Rare Event Search with Superconducting Thermometers

Setup?

Dilution Refrigerator

Scintillating CaWO₄ crystals as target

Separate cryogenic light detector

Cryogenic Rare Event Search with Superconducting Thermometers

Where?

Laboratori Nazionali del Gran Sasso (LNGS) underground facility, Italy

Background suppression

- Underground site
- Shielding/vetoing
- Radon mitigation
- Purity of materials
- Material handling
- Event discrimination

Cryogenic Rare Event Search with Superconducting Thermometers

Target?

Scintillating CaWO₄ crystals

- 3 nuclei: O, Ca and W
- Light targets to maximize sensitivity for low mass dark matter
- Each particle interaction implies <u>phonon signal</u> + <u>light signal</u>

The CRESST experiment 9 Cryogenic Rare Event Search with Superconducting Thermometers Silicon on Sapphire (SOS) crystal Crystals operated as cryogenic calorimeters Sensor CaWO₄ crystal Absorber Heat bath ~ 15 mK

Cryogenic Rare Event Search with Superconducting Thermometers

10

Cryogenic Rare Event Search with Superconducting Thermometers

Silicon on Sapphire (SOS) crystal CaWO₄ light particle interaction phonons W-TES

CaWO4 and SOS crystals readout by **W-Transition Edge Sensors (TES)**

11

Cryogenic Rare Event Search with Superconducting Thermometers

Stability? Calibration? Thresholds?

W-TES equipped with heaters

- Stabilization of detectors in the operating point
- Injection of heat pulses for calibration and determination of trigger threshold

12

Heater

Thermal link

Cryogenic Rare Event Search with Superconducting Thermometers

Efficiency?

Simulated pulses (of desired energies) passed through analysis chain

Empty baseline

Simulated pulse

Averaged pulse

Cryogenic Rare Event Search with Superconducting Thermometers

Silicon on Sapphire (SOS) crystal

Cryogenic Rare Event Search with Superconducting Thermometers

Cryogenic Rare Event Search with Superconducting Thermometers

Precise determination of QFs for O, Ca & W @mK temperatures

Values (in ROI)

- O: (11.2 ± 0.5)%
- Ca: (5.94 ± 0.49)%
- W: (1.72 ± 0.21)%

Queching factor measurements @ accelerator of Maier-Leibnitz-Laboratorium

EPJ C (2014) 74:2957

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST-II results

Crystal: Lise (mass 300 g) Background level ~ 8.5 counts/(keV kg day) Threshold: 307 eV, Resolution: σ = 62 eV @ 0 eV Exposure: 52 kg day

World-leading below 1.7 GeV/c²

CRESST-II results

Crystal: Lise (mass 300 g) Background level ~ 8.5 counts/(keV kg day) Threshold: 307 eV, Resolution: σ = 62 eV @ 0 eV Exposure: 52 kg day

World-leading below 1.7 GeV/c²

Hunting light dark matter requires a low threshold!

Exploring new parameter space below 0.5 GeV/c^2

Dark matter recoil spectrum: CaWO₄ target , ideal detector

Exploring new parameter space below 0.5 GeV/c²

Dark matter recoil spectrum: CaWO₄ target , ideal detector

Challenges

Small recoil energies
 ~ keV range

Exploring new parameter space below 0.5 GeV/c²

Dark matter recoil spectrum: CaWO₄ target , ideal detector

<u>Challenges</u>

- Small recoil energies
 ~ keV range
- Featureless spectrum

Exploring new parameter space below 0.5 GeV/c²

Dark matter recoil spectrum: CaWO₄ target , ideal detector

<u>Challenges</u>

- Small recoil energies
 ~ keV range
- Featureless spectrum
- Very rare current limit*
 \$\mathcal{O}\$(0.01) counts/tonne day

Exploring new parameter space below 0.5 GeV/c²

Dark matter expected rate: CaWO₄ target , ideal detector

Challenges

- Featureless spectrum
- Small recoil energies
 ~ keV range
- Very rare current limit^{*}
 Ø(0.01) counts/tonne day

The CRESST-III strategy: go for small

To improve sensitivity to low masses a radical change of strategy:

Smaller crystals: $250g \rightarrow 24g$

Threshold goal: $300eV \rightarrow 100eV$

21

EPJ C (2016) 76:25

CRESST-III low-threshold detector

Exploring new parameter space below 0.5 GeV/c²

CRESST-III detector dimensions scaling down	(CRESST-I
• (20×20×10) mm ³	(40×40×40
• Mass ~ 24 g	(~300)
 Threshold goal ~ 100 eV 	(~300)
• Self grown crystals ~ 3	(~8.5)
counts/(keV kg day)	
• Fully scintillating housing	no
Instrumented sticks	no
$\$ Surface related background vet	toing

CRESST-III Phase 1

CRESST-III Phase 1

Optimum algorithms

Pulse height evaluation

The **Gatti-Manfredi filter** is an <u>Optimum Filter</u> (OF) which maximises the ratio between the amplitude of the treated pulse and the noise RMS

Optimum algorithms

Pulse height evaluation

100

Time Ims

200

0.035

0.03

0.025

0.02

0.02 0.015 0.015 0.005

-0.005

-0.01

-0.015

-200

-100

The **Gatti-Manfredi filter** is an <u>Optimum Filter</u> (OF) which maximises the ratio between the amplitude of the treated pulse and the noise RMS

300

400

-100

100

Time Ims

200

300

400

500

0

J Low Temp Phys (2019) doi.org/10.1007/s10909-018-1948-6

500

-0.015

-200

Optimum algorithms

Optimum filter for threshold analysis

- Study the noise distribution after optimum filter in order to set the threshold
- Analytical description of amplitude distribution in empty baselines
- Threshold optimised based on noise triggers in a given exposure
- Study the noise distribution after OF in order to set the thresholds (<u>Optimum Trigger</u>)

Detector A 30.1 eV threshold

Selection criteria

Objective

Accept events where a correct determination of the amplitude (→energy) is guaranteed

Unbiased (blind) analysis

- 1. Design cuts on <u>non-blind</u> training set (≤20% of DM data)
- 2. Apply without change to <u>blind</u> DM data set

Rate: Stability: Data quality: Coincidence

noise conditions (14% of measuring time) Detector(s) in operating point (3% of measuring time) Non-standard pulse shapes (e.g. i-Stick events and pileup) with µ-veto (7.6% of measuring time), i-Sticks and other detector modules

Detector A

Data takina:	10/2016 - 01/2018
Non-blind data:	20% randomly selected
Taraet crystal mass:	23.6 g
Gross exposure (before cuts):	5.689 ka davs
Analysis threshold.	30.1 eV
	00.1 0 1

Efficiency/signal survival probability

Neutron calibration - bands fit

Unbinned Maximum Likelihood fit

 Calculation using QFs from MLL neutron beam measurement

Dark Matter data - energy spectrum

Analysis optimized for very low energies: $30 \text{ eV} \rightarrow 16 \text{ keV}$ Cosmogenic activation $\rightarrow 179\text{Ta} + e^- \rightarrow 179\text{Hf} + v_e$ (1.8y)

Det A – Full dataset analysis Results

Energy spectrum of accepted events

Simulated Dark Matter energy spectrum

Results

Results

More than one order of magnitude improvement at 0.5 GeV/c²

Results

More than one order of magnitude improvement at 0.5 GeV/c²

Reach of direct dark matter experiments extended to 0.16GeV/c²

10 10

10

10⁻⁸

10

10-10 0.1

0.2

0.3 0.4

Results

More than one order of magnitude improvement at $0.5 \,\text{GeV/c}^2$

Reach of direct dark matter experiments extended to $0.16 \text{ GeV/}c^2$

Unexpected rise of event rate at E < 200 eV

Coherent Neutrino Scattering on CaWO

5 ecti 10-34

^{35 ئە}

10⁻³⁶

10⁻³⁷

10⁻³⁸

10⁻³⁹

ō Ŧ

⋝

⁻³ La D -46

=

678910

Dark Matter Particle Mass (GeV/c²)

Conclusion

- The CRESST-III det-A collected an exposure of 5.689 kg days, reaching a nuclear recoil threshold of 30.1 eV
- World leading direct dark matter experiment below 1.7 GeV/c²
- More than one order of magnitude improvement at 0.5 GeV/c²
- Reach of direct dark matter experiment extended to 0.16 GeV/c²
- Unexpected rise of event rate at E < 200 eV

Conclusion ... this is the beginning

Analysis on other detectors of previous run is ongoing...

A second CRESST-III run started: upgraded detector modules with dedicated hardware changes to investigate the origin of the background excess

Additional active magnetic field compensation with three pair of coils for x,y & z-axes

Conclusion ... this is the beginning

- The cryostat is cold
- Calibrations performed
- Analysing data

Conclusion ... this is the beginning

This is a new starting point for DM search. Light DM search program complements the liquefied noble gasses and Nal programs.

We are crossing a door and we have no idea of what we will find on the other side.

New frontiers. New potential. New challenges...

The CRESST collaboration

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali del Gran Sasso

Max-Planck-Institut für Physil

(Werner-Heisenberg-Institut)

MÜNCHEN

