Supermassive Black Holes from Quantum Condensate Dark Matter

- Black Hole/Dark Halo Ratio from Rotation and Axion -

Masahiro Morikawa

collaboration with Sakura Takahashi

Physics Dept. Ochanomizu Univ.

We explore the possibility that quantum condensed DM/DE formed SMBH before the star formation. The detail is in arxiv:1903.02986.

 $DE \rightarrow DM \rightarrow SMBH \dots dark$ species are connected with each other

1. Introduction

1. Why most of the galaxies have Supermassive BH (SMBH)? $...10^{6-10} M_{\odot}$

- 2. Why SMBH is located at the center of the galaxy? 3. Why SMBH is formed so early?... $z \approx 6 - 7.5$
- 4. Why SMBH and the galaxy bulge have universal correlation

$$\dots M_{\bullet} = \frac{f\kappa\sigma^4}{4\pi G^2} \propto \sigma^4$$

- SMBH seems to define the center of the galaxy
- → SMBH was formed first $@z \approx 10 20$
- → The SMBH triggered the star formation and the galaxy@ $z \le 10$
 - *i.e.* the coevolution might be rapid...

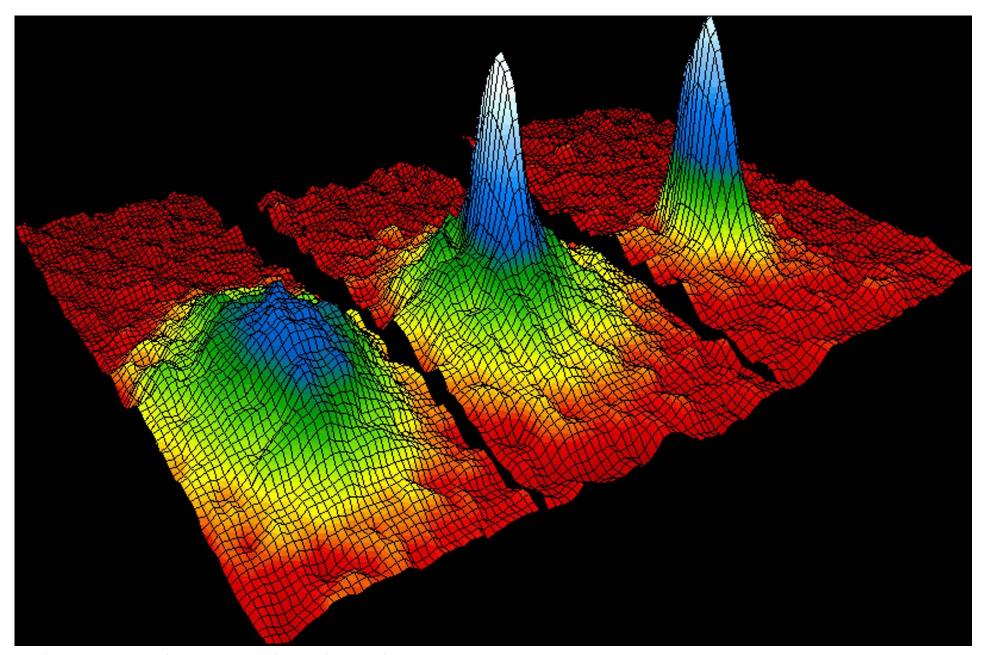
2. How SMBHs were formed?

If BH formed by Baryons $m_{pl}^{3} / m_{p}^{2} \approx M_{\odot} (m_{pl} \equiv \sqrt{\hbar c / G})$

- \clubsuit small BH of size $\,M_\odot\,$ coalesces \rightarrow self-gravitating system
- → coalescence requires too long time to form $10^{7-9} M_{\odot}$ → Accretion also requires too long time ($10^3 M_{\odot} \rightarrow 10^9 M_{\odot}$ needs 6.2Gy by Edd. Acc.)
- The above assumed **particles**.
- We would like to consider coherent wave for rapid collapse.
- On the other hand, we once proposed the unified model of DE/DM (Fukuyama, MM 2009)

(**DE**=condensate, **DM**=gas *i.e.* **same boson but different phases**)

Our problem is... How BEC wave collapses to form SMBH.



4

Rb atom time series in phase space <u>https://www.youtube.com/watch?v=1RpLOKqTcSk</u>

Experimentally found BEC in dilute gases of alkali atoms:

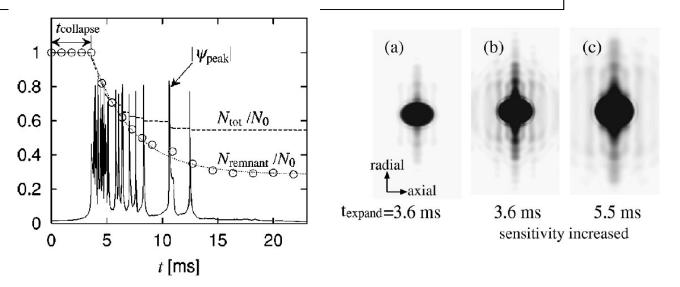
Experiments <u>http://amo.phy.gasou.edu/bec.html/</u>



boson-nova in BEC experiments: Wieman et.al.¹²

BEC actually collapses to 10^{-5} times denser after 5ms,and burst explosion. BEC decay ejection of jet oscillation continues!

★ Numerical work:
 Hiroki Saito
 and Masahito Ueda
 2002



¹ J.R. Anglin and W. Ketterle, Nature (London) 416 (2002 March 14) 211 for review. J.M. Gerton, et al. (2000), S.L. Cornish et al. (2000) E.A. Donley et al. (2001).

² H. Saito and M. Ueda, Phys. Rev. A 65 (2002) 033624.

BEC condition: (thermal de Broglie length) > (mean separation of particles):

$$\lambda_{dB} \equiv \left(\frac{2\pi\hbar^2}{mkT}\right)^{1/2} > r \equiv n^{-1/3}$$
 i.e. $kT < \frac{2\pi\hbar^2 n^{2/3}}{m}$ and

Cosmic evolution: $n = n_0 \left(\frac{m}{2\pi\hbar^2} \frac{T}{T_0}\right)^{3/2}$ has the <u>same</u> temperature

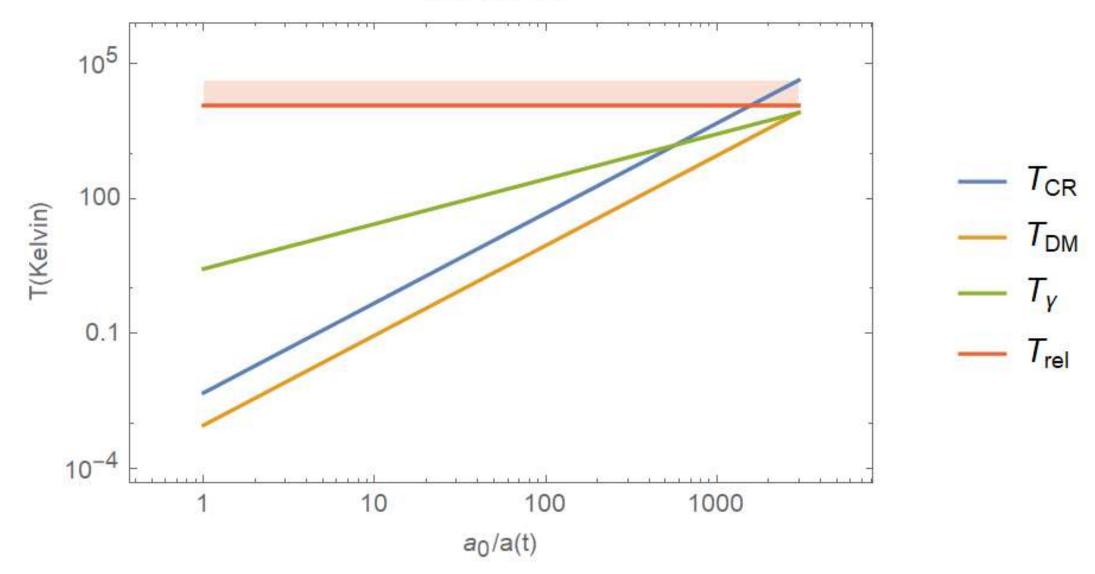
dependence!

$$\Rightarrow T_{cr} = 4 \times 10^{-3} (eV/m)^{5/3} K$$
$$T_{DMt} = T_{DM0} (a_0 / a_t)^2$$
$$T_{\gamma t} = T_{\gamma 0} (a_0 / a_t)$$

- Therefore, once BEC, it keeps BEC in the adiabatic process.

\Rightarrow If $T_{DMt} = T_{\gamma t}$ before the decoupling, then DM is quantum condensed for m < 10 eV.

case m=1eV



- Kaup limiting mass $M_{kaup} = 0.633 \frac{\hbar c}{Gm} \approx \frac{m_{pl}^2}{m}$ beyond which the BEC simply collapses.
- However, for non-adiabatic collapse, T increases and BEC melts into gas.

Ex) $T = 5.6 \times 10^{-2} (m/eV) K$ for $M = 10^{12} M_{\odot}, R = 10 kpc$

...and exceeds the critical temperature.

Literature:

- Critical phenomena of BH: Choptuik 1993, Gundlach 2007 $M_{BH} \propto (\,p-p_*\,)^\gamma$
- SMBH formation from BEC DM/DE

Nishiyama et al. 2004. Fukuyama et al. 2006.

• Gupta and Thareja 2017, Shavanis 2017. Similar BEC collapse using Gaussian app.

3. SMBH formation

We solve the wave equation

$$i\hbar \frac{\partial \psi(t,\mathbf{x})}{\partial t} = \left(-\frac{\hbar^2}{2m}\Delta + m\phi + g|\psi|^2\right)\psi$$
: Gross Pitaevski eq. for BEC

with

 $\Delta \phi = 4\pi Gm |\psi|^2$: Poisson eq. where $\psi(t, \mathbf{x})$ is the BEC condensate macro wave function

- Newtonian approximation...discarding the back reaction to space-time, may be a simple indicator of the BH formation

- Gaussian approximation...reduction of PDE to a set of ODE

$$\psi(t,x) = Ne^{-r^2/(2\sigma(t))^2 + ir^2\alpha(t)}, \ \phi(t,x) = -\mu(\tau) e^{-r^2/(2\tau(t))^2}$$

$\bigstar \quad Isotropic \ collapse$

$$L = (i\hbar/2) (\psi^{\dagger}\dot{\psi} - \dot{\psi}^{\dagger}\psi) - (\hbar^2/2m) \nabla\psi^{\dagger}\nabla\psi - (g/2) (\psi^{\dagger}\psi)^2 - (1/8\pi G) \nabla\phi\nabla\phi - m\phi\psi^{\dagger}\psi.$$

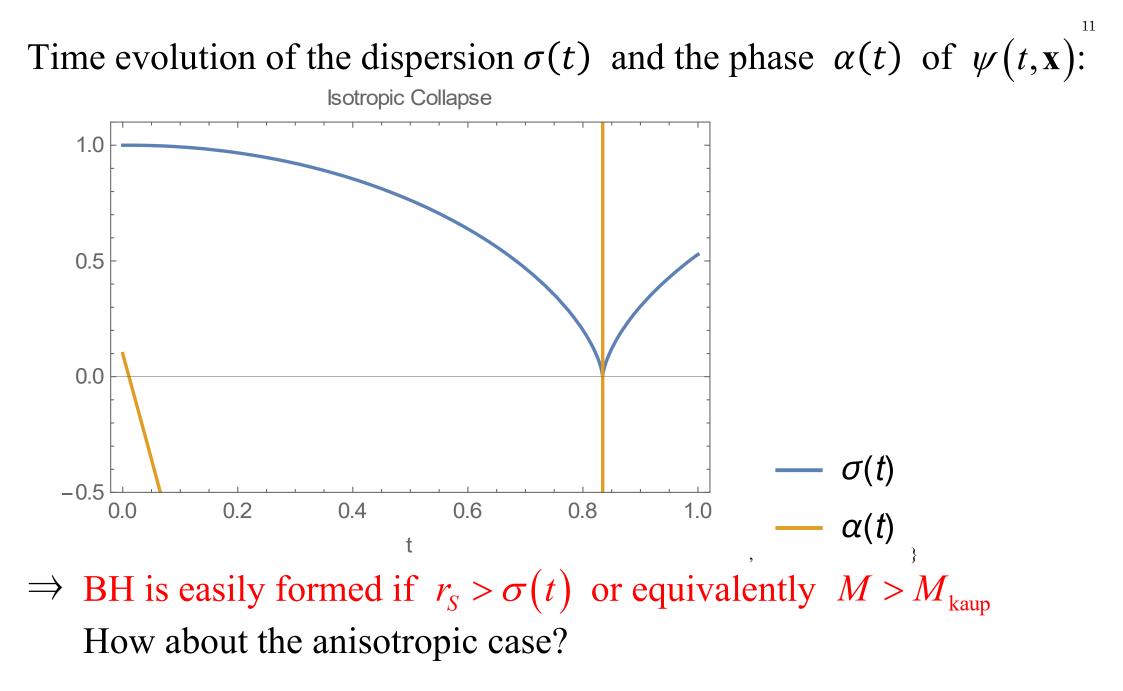
- Putting the Gaussian form of $\psi(t, \mathbf{x})$ and $\phi(t, \mathbf{x})$ into the original Lagrangian.
- Then spatially integrate it to yield the effective action.
- Replace the dispersion $\tau(t)$ in the Laplace equation.
- Inserting the formal solution for $\alpha(t)$
- and we obtain the Effective Lagrangian

$$\Rightarrow$$

$$L_{\text{eff}} = 1/16(-(2\sqrt{2}gN^2)/(\pi^{3/2}\sigma(t)^3) - (12N\hbar^2)/(m\sigma(t)^2) - (48N\hbar^2\alpha(t)^2\sigma(t)^2)/m$$

+
$$(32\sqrt{2N\mu(t)})/(\sigma(t)^2(2/\sigma(t)^2 + 1/\tau(t)^2)^{3/2}))$$

 $- (3\sqrt{\pi\mu} (t)^{2} \tau (t))/G - 24N\hbar \sigma (t)^{2} \alpha' (t)).$



\bigstar Anisotropic case

Putting $\psi(t,x) = \exp\left[ix_1^2\alpha_1(t) - \frac{x_1^2}{2\sigma_1(t)^2} + ix_2^2\alpha_2(t) - \frac{x_2^2}{2\sigma_2(t)^2} + ix_3^2\alpha_3(t) - \frac{x_3^2}{2\sigma_3(t)^2}\right]$

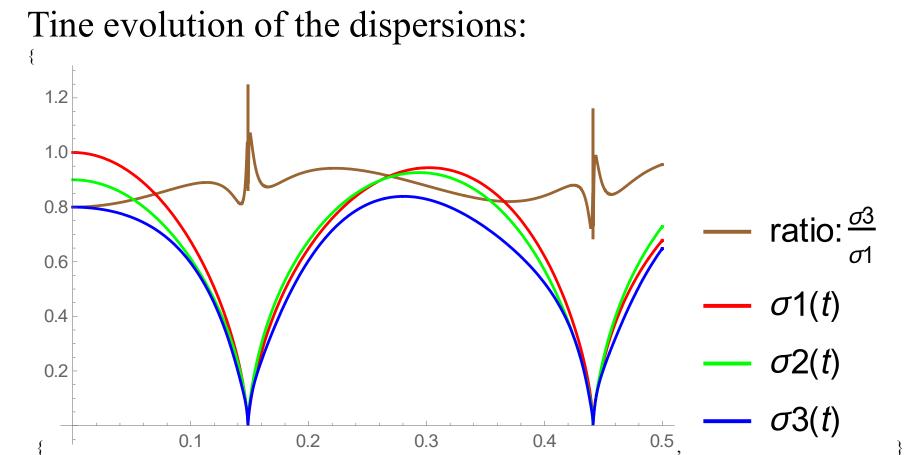
and $\phi(t, \mathbf{x})$ into the original Lagrangian, spatially integrate it.

- Remove the dispersion $\tau(t)$ of $\phi(t, \mathbf{x})$ by the Laplace equation
- Input the formal solution for $\alpha(t)$ into it, we get the effective Lagrangian:

 $L_{\text{eff}} = -\frac{N}{4m\sigma_1(t)^2} - \frac{N\hbar^2}{4m\sigma_2(t)^2} - \frac{N\hbar^2}{4m\sigma_3(t)^2} - \frac{gN^2}{4\sqrt{2}\pi^{3/2}\sigma_1(t)\sigma_2(t)\sigma_3(t)} + \dots - \frac{1}{4}mN\sigma_3(t)\sigma_3''(t)$

- The corresponding effective potential:

$$V_{\text{eff}} = \frac{gN}{2\sqrt{2}\pi^{3/2}\sigma_1(t)\sigma_2(t)\sigma_3(t)} + \frac{25\sqrt{\frac{10}{\pi}}GN\sqrt[3]{\sigma_2(t)}\sqrt[3]{\sigma_3(t)}}{243\sigma_1(t)^{5/3}} + \dots + \frac{\hbar^2}{2m\sigma_1(t)^2} + \frac{\hbar^2}{2m\sigma_2(t)^2} + \frac{\hbar^2}{2m\sigma_3(t)^2}$$



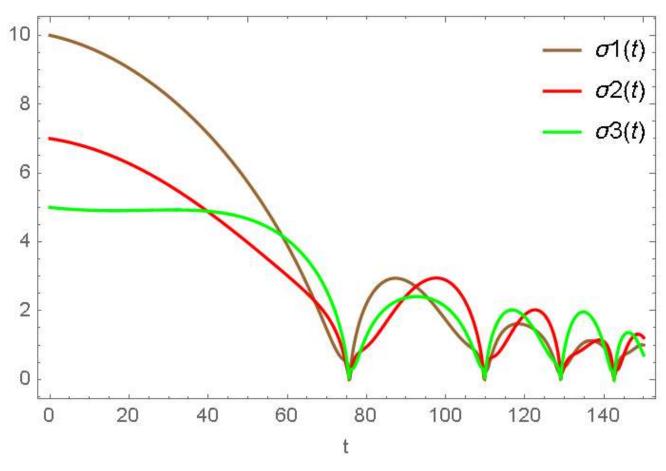
 Anisotropic BEC can collapse to form BH. Initial anisotropy is almost maintained but violently oscillate at BH formation.
 The bounce repeats almost periodically. 13

\star Dissipative collapse

non-adiabatic case

$$L_{\rm diss} = e^{\gamma t} L$$

Anisotropic collapse with dissipation



Forms concentric shell structure

cf. <u>NGC 3923</u> NASA

\star BEC with the angular momentum

For the wave function,

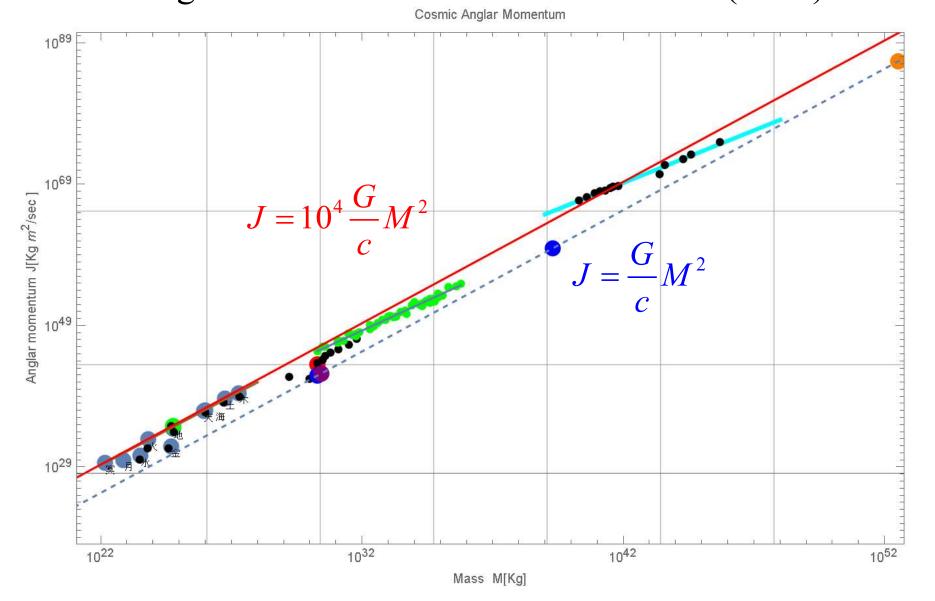
$$\psi(t, \mathbf{x}) = e^{-\frac{r^2}{2\sigma(t)^2} + ir^2\alpha(t)} Y_l^m(\theta, \phi)$$

Effective potential becomes:

$$\frac{gN}{\sigma(t)^3} - \frac{Gm^2N}{\sigma(t)} + \frac{A^2}{m\sigma(t)^2}$$

 \Rightarrow Large angular momentum A prevents the BH formation

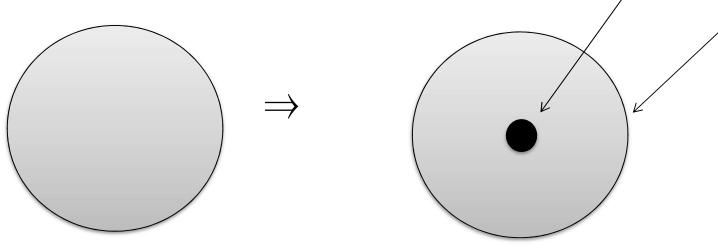
4. Angular momentum prevents the SMBH formation ♦ Cosmic angular momentum Nakamichi et.al. (2009)



- Planets to the cluster of galaxies: $A = \alpha \frac{G}{c} M^2 = \alpha \hbar \left(\frac{M^2}{m_{pl}^2} \right) \quad \alpha = 10^4$

The balance $-\frac{Gm^2N}{\sigma(t)} + \frac{\hbar^2A^2}{m\sigma(t)^2}$ yields $M_{cr} \approx 100M \rightarrow \underline{\text{No collapse}}$ *i.e.* Angular momentum prevents the SMBH formation as a whole. or...

Angular momentum should control the division of SMBH and DH.



Astronomical structures are protected by their angular momentum free from entirely being BH.

Solution 1: ... reduce the wall of angular momentum \rightarrow Go back to the early stage when the dark halo (DH) fully acquires the angular momentum

i.e. BH before tidal torque mechanism

 \rightarrow Earlier the formation stage, larger the BH (an example of the downsizing)

Solution 2:

... conquer the wall of angular momentum

 \rightarrow Introducing attractive interaction g < 0 such as Axion

5. SMBH formation controlled by angular momentum (solution 1)

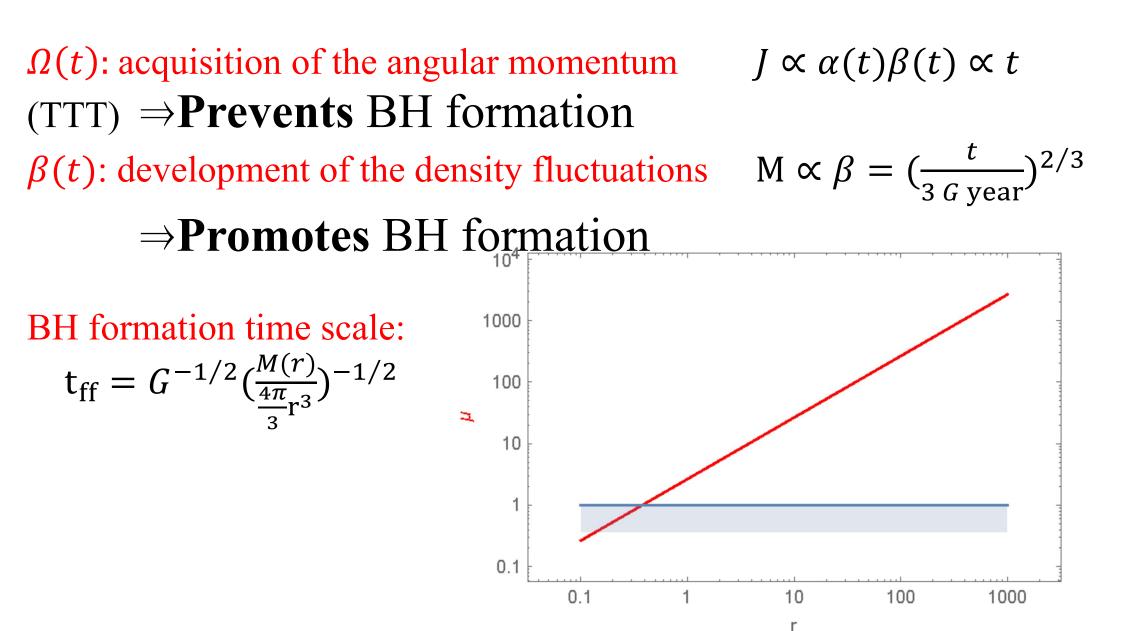
Density profile:
$$\rho = \beta(t) \frac{\rho_0}{(\frac{r}{r_0})^2}$$

Rigid rotation: $v = \alpha(t)\Omega r$

Angular momentum:
$$J(r) = \frac{4}{3}\pi\alpha(t)\beta(t)\rho_0 r_0^2 r^3\Omega$$

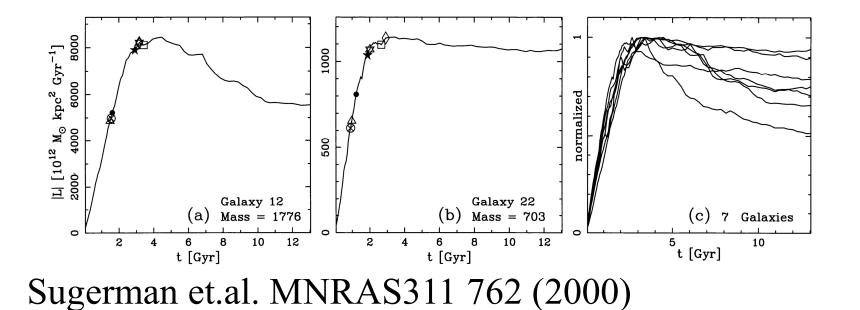
Mass:
$$M(r) = 4\pi\beta(t)\rho_0 r_0^2 r$$

•BH formation condition: $\mu \le 1$, $\mu \equiv \frac{cJ}{GM^2} = \frac{cr\Omega(t)\alpha(t)}{12\pi\beta(t)G\rho_0r_0^2}$



• Tidal Torque Theory (TTT)

 $J(t) = \int_{a^{3}V} dr \,\rho r \times \dot{r} = \rho_{b} a^{5} \int_{V} dx \,(1+\delta)x \times u \quad \text{yields}$ $J(t) = \rho_{0} a_{0}^{3} a(t)^{2} \dot{D}(t) \int_{V} dq \,q \times \nabla \varphi(q) \propto t \quad i.e. \text{ linear evolution}$ $(r = a(t)x, u = \dot{x}, x(q, t) = q - D(t)\nabla \varphi)$



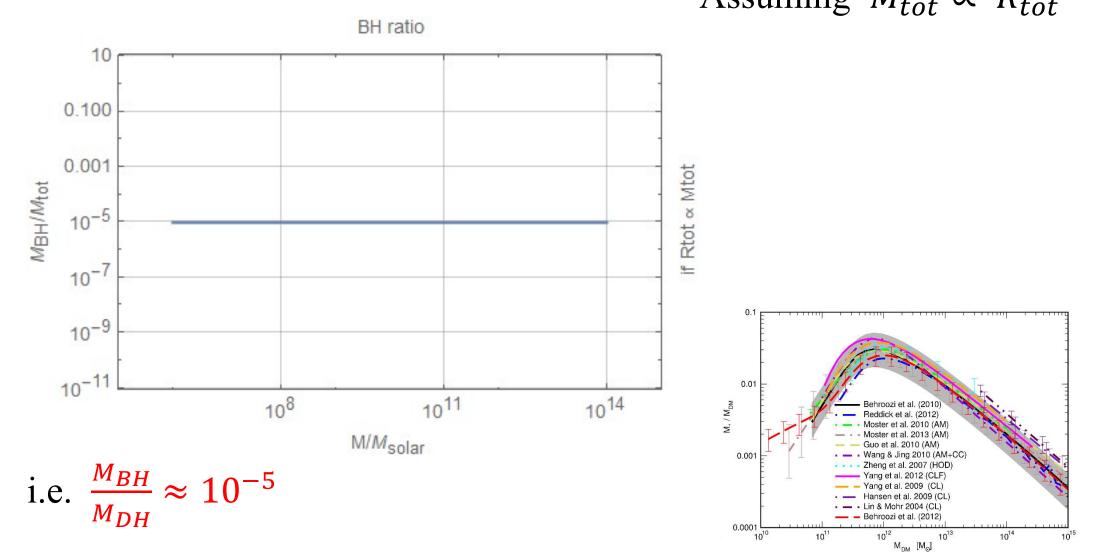
A typical galaxy acquires its present amount of angular momentum within about 3Gy...by numerical calculations.

Solving $t_{ff}(t,r) = t$ and $\mu(t,r) = 1$, we obtain t = BH formation time scale: $\frac{2\sqrt{G}\sqrt{Mtot}\sqrt{6\pi}}{c\sqrt{Rtot}\Omega}$ r = BH region: $\frac{6G^{7/6}Mtot^{7/6}(3\pi)^{1/6}}{c^{4/3}Rtot^{7/6}t_J^{1/3}\Omega^{4/3}}$ M = BH mass: $\frac{12G^{3/2}Mtot^{5/2}\sqrt{3\pi}}{c^{2}Rtot^{5/2}t_J\Omega^{2}}$ Typically, for

 $M_{tot} = 10^{11} M_{\odot}$, $R_{tot} = 10 \text{kpc}$, $\Omega = \frac{200 \frac{\text{km}}{\text{Sec}}}{R_{tot}}$, $t_J = 3$ gigayear, we have

r = 20pc, $t = 0.9 * 10^{6} year$ M = 0.94 * 10⁷ solarmass

- More generally, BH/DH ratio (M_{BH}/M_{DH}) is given as Assuming $M_{tot} \propto R_{tot}$



Observation: Kormendy & Ho (2013)

6. Axion case: angular momentum vs. attractive force (solution 2) Density profile: $\rho = \frac{\rho_0}{1 + (\frac{r}{r_0})^2}$ Rigid rotation: $v = r\Omega$

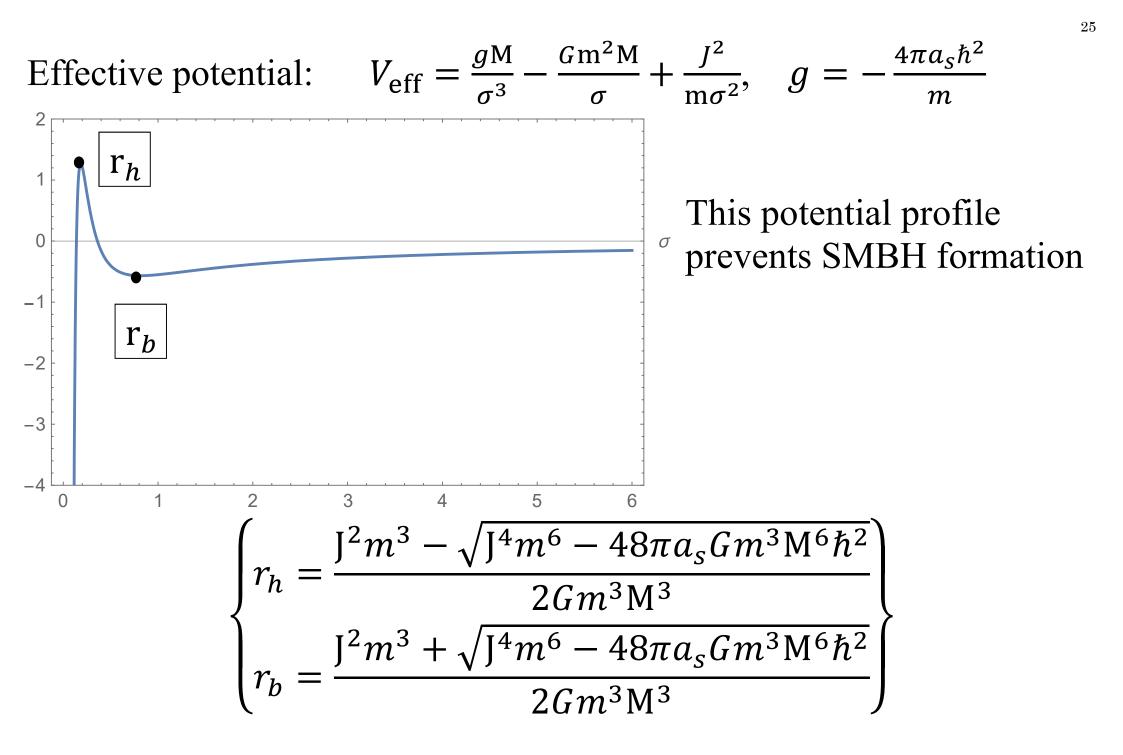
angular momentum 1000.00 $J(r) = 4\pi\rho_0 \Omega r_0^2 \left(\frac{1}{3}r^3 + r_0^3 \tan^{-1}\left(\frac{r}{r_0}\right) - rr_0^2\right)$ 0.01 10^{-7} 10⁻¹² 0.10 0.01 1 10 10⁸ mass: 10⁵ $M(r) = 4\pi\rho_0 r_0^2 (r - r_0 \tan^{-1}(\frac{r_0}{r_0}))$ 100 0.1 10^{-4} 10

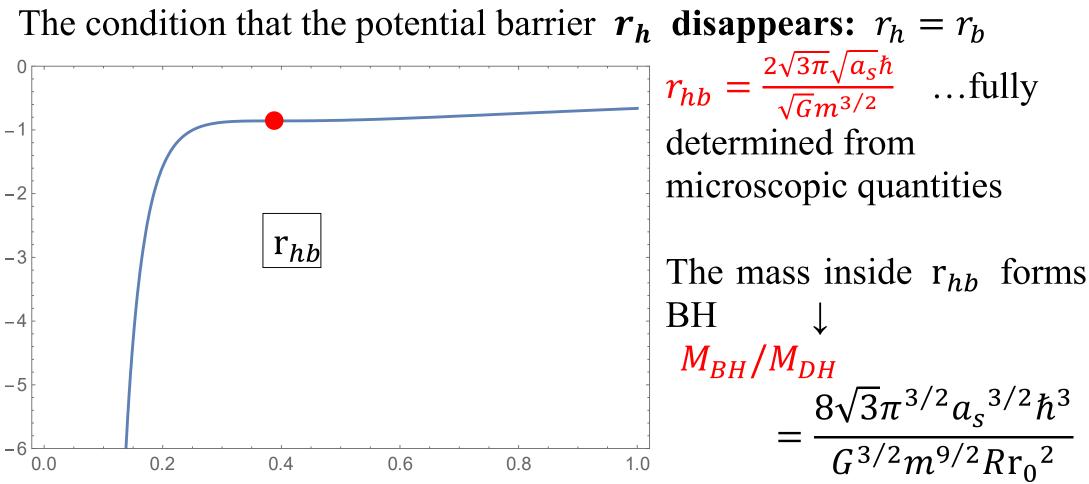
0.01

0.10

10

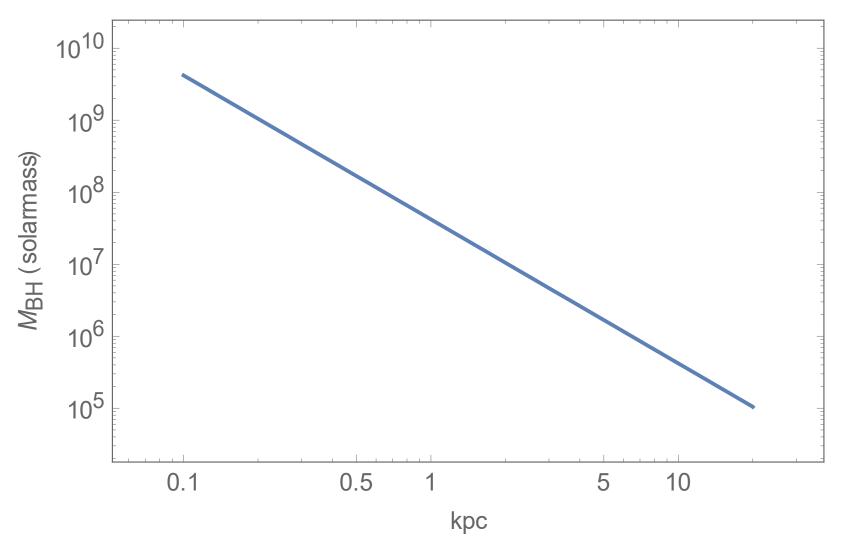
100

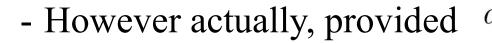


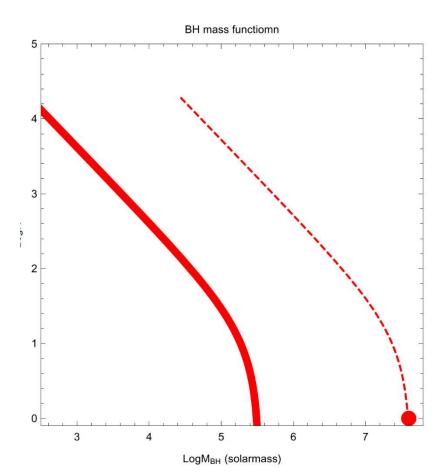


Typically $m = \frac{eV}{10^5 c^2}$, $a_s = \frac{Meter}{10^{29}}$, r0 = kpc, R = 10kpc, $M = 10^{12} M_{sun}$ $\Rightarrow r_{hb} = 108 pc$, $\frac{M_{BH}}{M_{DH}} = 4.2 * 10^{-5}$, $t_{BHform} = 6.25 * 10^4 year$ - However, many BHs defined by the radius r_{hb} everywhere in the galaxy \Rightarrow **BH everywhere**

 $M_{\rm BH}$ formed at distance kpc





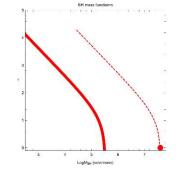


 $a_s = 10^{-30.4}$ meter, centrally concentrated 10³ BHs coalescent to form a big SMBH within the time scale $t_d = \frac{v^3}{G^2 n m^2 lnL} \approx \frac{N}{lnN} t_{ff}$ $\approx 6.8 \times 10^7 year$

and many BHs of mass $10^5 - 10M_{sun}$ maybe formed at outer region.

7. Conclusions and Discussions

- Based on the scenario that SMBH is formed before stars, we considered SMBH formation form BEC(DE/DM) collapse
- GP equation, Gaussian approximation $\rightarrow V_{eff}$
- Angular momentum controls SMBH-DH ratio.
- Attractive force by Axion balances with the angular momentum
 - $\rightarrow \frac{M_{SMBH}}{M_{DH}} \approx 10^{-5}$
- BH formation in all scales



 $DE \rightarrow DM \rightarrow SMBH \dots dark$ species are connected with each other

