Searches for new physics such as Dark Matter with the ATLAS detector

Hernán Wahlberg

on behalf of the ATLAS Collaboration

Universidad Nacional de La Plata – IFLP CONICET

The 15th International Conference on the DARK SIDE OF THE UNIVERSE

15 -19 July 2019 Buenos Aires, Argentina

Outline

- ATLAS LHC @ Run-2
- Beyond Standard Model Results

- SUSY (Conventional, Unconventional Signatures)
- Dark Matter (Direct X+MET and Mediator Resonances)
- Future Prospects for HL-LHC

LCH-ATLAS Run-2

 Run 1 (2010-2012):
 7-8 TeV

 Run 2 (2015-2018):
 13 TeV

 Run 3 (2021-2023):
 14 TeV

Integrated pp luminosity during Run-2

High-luminosity comes with a challenge

Excellent data taking (94%) and data quality (95%) efficiencies thanks to highly committed ATLAS operator and shifter teams. Integrated luminosity in Run-2 measured to 1.7% precision ATLAB-00NF-2019-021

ATLAS Improvements during 2013-14 Shutdown for Run-2

- Infrastructure
 - New beam-pipe, improvements to magnet and cryogenic system
- Detector consolidation
 - Muon chambers completion and various repairs
- 4th silicon pixel detector layer (IBL)
 - Innermost Pixel detector layer at 3.3 cm from beam pipe
- Trigger/DAQ
 - Increase max. L1 rate from 75kHz to 100kHz. New L1 topological trigger. New Central Trigger Processor. Merge L2 and HLT farms.

ATLAS: What we did find !

ATL-PHYS-PUB-2019-024

Dark Matter from...

Physics Beyond Standard Model: Why SUSY ?

Could solve:

- Hierarchy problem
 Low-mass top squarks cancel SM contributions to Higgs mass
- Unification gauge coupling
 Presence of sparticles (at TeV scale)
 changes running of couplings
- Dark matter

Lightest SUSY particle can be massive, stable and weakly interacting. R-parity protects lightest SUSY particle from decaying

How?:

- Generalization of SM: symmetry between force and matter particles
- Introduces sfermions and gauginos doubles particle content wrt SM

With 100 free parameters wide range of possible experimental signatures

fermion and boson loops contribute with different signs to the Higgs radiative corrections; fermion-boson symmetry protects the scalar Higgs.

Gauginos: e.g. $g \longleftrightarrow \tilde{g}$

ATLAS-CMS Dark Matter Forum for Run-2

In Run-2 the ATLAS and CMS experiments moved away from the use of EFT inspired models (questionable validity at high-Q²)

A set of well-defined simplified s-channel exchange diagrams with heavy mediators is now considered motivated by a number of different considerations

Mostly 4 parameters:

- Mediator mass (M_{Med})
- WIMP mass (m_v)
- 2 couplings (g_{q}, g_{χ}), typically (1, 0.25)

DM as as Dirac-fermionic WIMPs

 Neutral, stable, weakly interacting particles with mass O(100 GeV)

arXiv:1507.00966v

SUSY Searches: Paradigm Shift

Having found no SUSY so far in "standard" channels (strong production, large mass splittings), the searches are shifting in the following directions:

- Compressed spectrum scenarios (e.g, stop nearly degenerate with top quark + neutralino masses)
 - Use ISR as an important tool to boost compressed system
- Search for EW production of SUSY particles
 - Sensitivity for Higgsino pair production rapidly increasing the reach
- Search for SUSY via Higgs boson in decay chains
 - Just started to be sensitive
- Long-Lived Particles
- Go beyond the R-parity conserving models

Search strategy for new physics

Direct pair production of top and bottom squark

- All SUSY particles are considered to be heavy except for t_1 (b_1) and χ
- Different analysis techniques are required in different $\Delta m(t_1, \chi^0_1)$ regime

a) pure bino LSP $\,$ b) wino NLSP $\,$ c) higgsino LSP $\,$ d) bino/higgsino mix

- h (bb) decay leads to multi b-jets final state
- OS 2-leptons from Z decay and an additional lepton(s) from top decay leads to multi-leptons final state.
- Different W decay modes with 1 lepton, SS 2 lepton or 3 leptons all sensitive for 3rd generation squarks

Top and Bottom Squark

The Higgs at 125 GeV inspires O(1TeV) stop. If natural SUSY exists, we are decreasing the places where it can hide

Multi b jets

 $(n_{obs} - n_{pred}) / \sigma_{tot}$

Exclusion stream uses meff shape & jet multiplicity information to perform a multi-bin fit. All search regions dominated by ttbar + heavy flavour events.

All the regions of the multi-bin analysis are statistically combined to set model-dependent upper limits. Observed constraints on gluino masses reach 2.2 TeV for Gtt simplified models

gluinos decaying via third generation off-shell squarks to the lightest neutralino

Limits also interpreted as a function of the gluino BR to Gtt / Gbb / Gtb

ATLAS-CONF-2018-041

Final states with jets & 2 same-sign leptons or 3 leptons

Search for strongly produced SUSY particles in SS/3L+jets events. Low SM background from same-sign requirement

No significant excess observed \rightarrow gluino exclusion up to 1.6 TeV

m(ĝ) [GeV]

EWK production of chargino/neutralino decaying to Wh

Assuming mass-degenerated and wino-like $\chi_{1}^{+}/\chi_{2}^{0}$, and a bino-like χ_{1}^{0}

Masses of χ_1^+ / χ_2^0 smaller than 680 GeV are excluded for a massless χ^0_1 . Unprecedented sensitivity to high-mass region by the signatures with b-jets (0lbb and 1lbb)

ATLAS

0lbb

1lbb

√s=13 TeV, 36.1 fb⁻¹, All limits at 95% CL

400

---- Expected

Observed

600

500

700

SUSY-2017-01 / ATLAS-CONF-2019-019

200

300

m(ỹ,0) [GeV]

300

250

200

150

100

50

Higgsino searches

Motivated by naturalness arguments Higgsino mass parameter μ is near the weak scale, while the bino and wino mass parameters, M1 and M2, can be significantly larger $|\mu| \ll |M1|, |M2|$. Compressed scenarios.

- ISR allows highly efficient triggering at lower masses. Soft leptons are required (3-4.5 GeV)
- Additional 1 lepton + 1 track SR improves efficiency of very small mass splitting.
- First ATLAS search to use a track as a proxy for a charged lepton.
- For the Higgsino simplified model, exclusion limits at 95% CL are set up to masses of 145 GeV and down to mass splittings of 2.5 GeV

Search for disappearing tracks

Sensitivity gains from use of ATLAS IBL

Search for long-lived charged particles (charginos) leading to disappearing track + MET Pixel-only trackless with IBL reduce minimum track length to 12 cm (from 30 cm in Run-I)

A for pure-higgsino signature, chargino masses up to 152 GeV are excluded $\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{1}^{\mp}$ production [su] [∓]× 0.2 ATLAS Preliminary √s=13TeV, 36.1 fb⁻¹ Observed 95% CL limit (±1 σ_{theory}) $\tilde{\chi}_{\star}^{\pm}$ excluded Expected 95% CL limit (±1 σ_{exp}) ----- Theoretical line for pure higgsino 0.1 LEP2 $\tilde{\chi}_{4}^{\pm}$ excluded 0.07 0.05 0.04 0.03 0.02 200

ATL-PHYS-PUB-2017-019

 $m_{\tilde{\chi}^{\pm}}$ [GeV]

Almost pure wino LSP scenario

JHEP 06 (2018) 022

SUSY Limits June - July 2019

Simplified models limits exploiting 2015-2018 Run 2 dataset

1.6-2.2 TeV exclusion for gluinos at low LSP mass

Some scenarios excluding 1 TeV stops

Note that these plots overlay contours belonging to different decay channels, different particle mass hierarchies, and simplified decay scenarios. Care must be taken when interpreting them.

Search for supersymmetric particles

ATLAS SUSY Searches* - 95% CL Lower Limits

M. 4-4751 D. c.g. 24 d p b. d. f.g. 25 methods methods 0100000000000000000000000000000000000		Model	S	lignatur	e j	L dt [fb	1]	Mass limit					Reference
Bit - wight 0 - r, 2 - 2 + ps z - ps 3.1 Free bits 0.05 + 2 - 2 - ps methods 0.05 + 2 - 2 - ps methods 0.05 + 2 - ps	60	$\bar{q}q, \bar{q} \rightarrow q\bar{\chi}_1^0$	0 ε,μ mono-jet	2-6 jets 1-3 jets	Enits Enits	36.1 36.1	(† [2x, 8x Degen.] ¢ [1x, 8x Degen.]	0.43	0.9	1.55	1.00	m(^{₹1})<100 GeV m(₹)-m(^{₹1})=5 GeV	1712.02332 1711.03301
B L=qu(CL) 3 μ μ (R) J=μ H=R LES meR <	Inclusive Searche	$\underline{p}\underline{p}, \underline{p} \rightarrow qq\bar{x}_{1}^{0}$	0 e,µ	2-6 jets	Ernix	36.1	8 8		Farbidden	0.95-1.6	2.0	m(²) > 200 GeV m(²) - 900 GeV	1712.02332 1712.02332
B μ		$\underline{B}\underline{R}, \underline{B} \rightarrow q \overline{q} (\ell \ell) \overline{k}_1^D$	3 е, µ ее, µµ	4 jets 2 jets	Emiss	36.1 36.1	2 2			1.2	.85	m(ℓ ⁰ ₁)::800 GeV m(ϱ)-m(ℓ ⁰ ₁)=50 GeV	1706.03731 1805.11381
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\underline{B}\underline{B}, \underline{B} \rightarrow qq WZ \overline{X}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{miss}	36.1 139	8 8			1.15	1.8	m(\tilde{k}_{1}^{0}) < 400 GeV m(g)-m(\tilde{k}_{1}^{0})- 200 GeV	1708.02794 ATLAS-CONF-2019-015
b, b, b, -b, -b, -b, -b, -b, -b, -b, -b,		<u>pp</u> , <u>p</u> →a <u>x</u> ⁰	0-1 e,μ SS e,μ	3 b 6 jets	E_T^{miss}	79.8 139	2 2			1.25	2.25	m(⁰):200 GeV m(g)-m(⁰):300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
δ h, h, -h k ² - b k ² 0 k μ 6 h Particision 0.23-1.35 Amoli f(-)-cook m(f)-cooke BUSYOBISI 6 h, h, -h k ² - b k ² 0 k μ 5 h F F 5.5.4.4 Amoli f(-)-cook m(f)-cooke BUSYOBISI 6 h, h - h k ² 0 k μ 2 k μ 0 k μ 5.1 1 Amoli f(-)-cook m(f)-cooke Malia f(-)-cooke Malia	ks on	$b_1 b_1, b_1 \rightarrow b \overline{x}_1^0 / \overline{x}_1^+$		Multiple Multiple Multiple		36.1 36.1 139	δι For δι δι	bidden Forbidden Forbidden	0.9 0.58-0.82 0.74		m(t ⁰)-200G	m(ℓ ⁰ ₁)= 300 GeV, BR(<i>b</i> ℓ ⁰ ₁)= 1 300 GeV, BR(<i>b</i> ℓ ⁰ ₁)=BR(<i>b</i> ℓ ⁰ ₁)=0.5 eV, m(ℓ ⁰ ₁)=300 GeV, BR(<i>k</i> ℓ ⁰ ₁)=1	1706.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		$b_1b_1, b_1 \rightarrow b\bar{k}_2^0 \rightarrow bh\bar{k}_1^0$	0 e, µ	6.6	Erniss	139	bi Forbidden bi	0.23-0.48		0.23-1.35	Δm(2) Δm	, \tilde{x}_1^0) - 130 GeV, m(\tilde{x}_1^0) - 100 GeV ($\tilde{x}_2^0, \tilde{x}_1^0$) - 130 GeV, m(\tilde{x}_1^0) - 0 GeV	SUSY-2018-31 SUSY-2018-31
$ \begin{array}{c} 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 \\ 80 $	20	$\bar{I}_{1}\bar{I}_{1}$, $\bar{I}_{1} \rightarrow Wb\bar{\chi}_{1}^{0}$ or $\bar{\chi}_{1}^{0}$	0-2 e, µ	0-2 jets/1-2	b Erniss	36.1	I,		1.1	D		m(t) = 1 GeV	1506.08616, 1709.04183, 1711.11520
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array}} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} $	<u>s</u> 5	$\bar{i}_1\bar{i}_1, \bar{i}_1 \rightarrow W b\bar{y}_1^D$	1 c. µ	3 jets/1 b	Erniss	139	Ĩ,	0.44-0.	.59			m(2 ⁰)⊨400 GeV	ATLAS-CONF-2019-017
$ \frac{1}{100} = \frac{1}{100} \frac$	50	Ist, II -> TIby, TI -> TG	1 T + 1 C, H.	r 2 jets/1 b	Erniss	36.1	I ₁			1.16		m(+1)-800 GeV	1803.10178
$ \begin{array}{c} 0 \\ \hline 0 \\ 0 \\$	in S	$\overline{h}\overline{h}, \overline{h} \rightarrow d\overline{x}_{1}^{0} / 2\overline{c}, \overline{c} \rightarrow d\overline{x}_{1}^{0}$	0 e, µ	20	Emiss	36.1	2		0.85			m(2)-0 GeV	1805.01649
$ \frac{1}{25} \frac{1}{5} $	б		0 e,µ	mono-jet	Erniss	36.1	11 11	0.46 0.43				m(ž1,2)-m(ž1)=50 GeV m(ž1,2)-m(ž1)=5 GeV	1805.01649 1711.03301
$\frac{1}{3} \int_{2}^{2} \frac{1}{2} - \frac{1}{4} + Z = 3 \epsilon_{\mu} + 1 b E_{\mu}^{mm} 33 = 1 Forbiddem 0.86 m(f) = 800 kW m(g), m(f) = 00 kW m(g$		$\overline{i}_{2}\overline{i}_{2}, \overline{i}_{2} \rightarrow \overline{i}_{1} + h$	1-2 c. µ	4 b	Erniss	36.1	12		0.32-0.88		mp	-0 GeV, m(r)-m(t) - 180 GeV	1706.03986
$ \frac{1}{2} 1$		$\overline{i}_2\overline{i}_2, \overline{i}_2 \rightarrow \overline{i}_1 + \mathbb{Z}$	3 e. µ	1.6	E_T^{miss}	139	12 I	Forbidden	0.96		m(*1)-	360 GeV, m(/1)-m(1)- 40 GeV	ATLAS-CONF-2019-016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\bar{\chi}_1^4 \bar{\chi}_2^0$ via WZ	2-3 e, µ ee, µµ	≥ 1	Emiss Efficient	36.1 139	X ⁺ ₁ R ⁰ ₂ X ⁺ ₁ R ⁰ ₂ 0.205		0.6			m(² 1)-0 m(² 1)-m(² 1)-5 GeV	1403.5294, 1806.02293 ATLAS-CONF-2019-014
$ \frac{1}{2} \int_{0}^{\infty} \int_{0}$		$\bar{\chi}_1^* \bar{\chi}_1^*$ via WW	2 e. µ		Erniss	139	\tilde{X}_{1}^{*}	0.42				m(8°)-0	ATLAS-CONF-2019-008
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\bar{\chi}_1^* \bar{\chi}_2^0$ via Wh	0-1 c. µ	2 b/2 y	Erniss	139	X1 R2 Forbidden		0.74			m(*)-70 GeV	ATLAS-CONF-2019-019, ATLAS-CONF-2019-XY
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SC E	X1X1 vin 21/9	2 e, µ		Emiss	139	£.		1,1	D		$m(\ell, y)=0.5(m(\ell_1^*)+m(\ell_1^0))$	ATLAS-CONF-2019-008
$ \frac{1}{4} 1$	王山	77, T→TX1	2 T		Erniss	139	T [TL. TR.L] 0.	16-0.3 0.12-0.39				m(#1)-0	ATLAS-CONF-2019-018
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e,µ 2 e,µ	0 jets ≥ 1	Etnixs Etnixs	139 139	7 0.25	56	0.7			m(t)-0 m(t)-m(t)-10 GeV	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
B Direct $\hat{f}_{1}\hat{f}_{1}^{2}$ prod. long-lived \hat{f}_{1}^{4} Disapp. trk 1 jet $\frac{\mu_{m}}{\chi_{1}}$ 0.46 Pure Winc 1712.02118 ATL.PHYSEL3017.019 1710.040011808.04095 1710.040011808.04095 1710.040011808.04095 1710.040011808.04095 1710.04011808.04095 1710.04011808.04095 1710.04011808.04095 1710.04011808.04095 1710.04011808.04095 1710.04011808.04095 1700.04011808.04095 1800.01858.0106 1800.01858.0106 1800.01858.0106 1800.01858.0106 1800.01858.0106		RA, R→hG/ZG	0 ε,μ 4 ε,μ	$\geq 3 b$ 0 jets	Enits Er	36.1 36.1	H 0.13-0.23	0.3	0.29-0.88			$BR(\tilde{\ell}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\ell}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lived cles	$Direct \bar{\chi}_1^+ \bar{\chi}_1^- prod., long-lived \bar{\chi}_1^+$	Disapp. trk	1 jet	E_T^{miss}	36.1	21 X1 0.15	0.46				Pure Wino Pute Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	승문	Stable g R-hadron		Multiple		36.1	k				2.0		1902.01636,1808.04095
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D B	Metastable g R-hadron, g→qqt1		Multiple		36.1	§ [r(§) =10 ns, 0.2 ns]				2.05 2.4	m(21)-100 GeV	1710.04901,1808.04095
$ \frac{1}{k_{1}^{2}k_{1}^{2}/k_{2}^{2} \rightarrow WW/Ztttrv}}{\frac{1}{k_{1}^{2}} \frac{1}{q \cdot q \cdot q \cdot q}}{\frac{1}{k_{1}^{2}} \frac{1}{q \cdot q \cdot q \cdot q}} \frac{4 c \mu}{4 - b \log k_{1}^{2} \log k_{1}^{2} + \frac{1}{k_{1} \log k_{1} \neq k_{1} \otimes \frac{1}{q} \otimes \frac{1}{q \cdot q} (\frac{1}{k_{1} \log k_{1} \otimes \frac{1}{q} \otimes \frac{1}{q}$	1000	LFV $pp \rightarrow p_r + X, p_r \rightarrow eu/er/ur$	eµ,et,µt			32	9.			-	1.9	Jun=0.11. Junamore=0.07	1607.08079
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	$\bar{v}^{\pm}\bar{v}^{\mp}/\bar{v}^{0} \rightarrow WWZZZZZ$	40.0	0 iets	Emiss	36.1	2. 18 (Am + 0, dos + 0)		0.82	1.33		m(1)-100 GeV	1804.03502
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\bar{p}\bar{p}$, $\bar{p} \rightarrow aa\bar{p}^0$, $\bar{p}^0 \rightarrow aaa$	4	-5 large-R is	ts	36.1	6 Im(P) - 200 GeV 1100 0	3oVI		1.3	1.9	Large X'	1804.03568
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		and Thereit The		Multiple		36.1	¥ [X'112=20-4, 20-5]	666	1.	05	2.0	m(2)=200 GeV, bino-like	ATLAS-CONF-2018-003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	₽.	$W \longrightarrow \overline{W}^0 \xrightarrow{V} \overline{V}^0 \longrightarrow rhs$		Multiple		36.1	§ [Z_m=20-4, 10-2]	0.55	5 1.	05		m(1)-200 GeV bino like	ATLAS-CONF-2018-003
$ \begin{array}{c} i_{j}i_{1},i_{1} \rightarrow q\ell & 2 \ b & 36.1 \\ 1 \ \mu & DV & 136 \end{array} \begin{array}{c} i_{1} & 0.4 - 1.45 \\ 1 \ \mu & DV & 136 \end{array} \begin{array}{c} 0.4 - 1.45 \\ 1 \ \mu & DV & 136 \end{array} $		by not		2 ints + 2 i	,	36.7	I [aa, bs]	0.42 (0.61	T			1710.07171
1 μ DV 136 1 [10-10< X ₂₁₆ <10-2 (X ₂₁₆ <		in in al	26.4	26		36.1	L	0.44		0.4-1.45		$BP(t_1 \rightarrow bc/b_0) > 20\%$	1710.05544
		The second se	1 /	DV		136	It 10-10< X_24 <10-8, 30	-10< X_28 <30-9]	1.	1.6		BR(r1→qu)=100%, cose=1	ATLAS-CONF-2019-006
	RPV	$\begin{split} \overline{u}, \overline{\iota} \to \widetilde{u}_1^0, \widetilde{\chi}_1^0 \to \iota bs \\ \overline{\iota}_s \overline{\iota}_1, \overline{\iota}_1 \to bs \\ \overline{\iota}_s \overline{\iota}_1, \overline{\iota}_1 \to bs \\ \overline{\iota}_s \overline{\iota}_1, \overline{\iota}_1 \to q\ell \end{split}$		2 ε.μ 1 μ	Multiple 2 jets + 2 i 2 ε.μ 2 b 1 μ DV	Multiple 2 jots + 2 b 2 ε,μ 2 b 1 μ DV	Multiple 36.1 2 jets + 2 b 36.7 2 ε,μ 2 b 36.1 1 μ DV 136	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Multiple 30.1 I $I_{12} = 24 - 4$ 0.5 Multiple 36.1 I $I_{2} = 24 - 4$ 0.5 2 jets + 2 b 36.7 I ₁ (40.47) 0.42 0 2 e, μ 2 b 36.1 I ₁ 0.42 0 0 1 μ DV 136 I ₁ (40.40 - 4) 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
							-1			-	- 10 - c		1

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, cf. refs. for the assumptions made.

Simplified models limits exploiting 2015-2018 Run 2 dataset

- 1.6-2.2 TeV exclusion for gluinos at low LSP mass, up to 1.8 TeV for squarks (8-fold degeneracy)
- Some scenarios excluding 1 TeV stops
- Up to 700 GeV limits for gauginos and sleptons

ATLAS Internal

Mono X Analysis - General Analysis Strategy

Non-interacting DM particles \rightarrow Missing transverse energy (MET)

X (γ , jet, W[±], Z, h)

Event Selection

- High MET, compatible with production
- If $X=_{Y}$, jet \rightarrow high $p_{\tau}(X)$ with quality criteria
- If X=W, Z, $h \rightarrow$ reconstruct mass within a windows
- Large MET (χ)
- Veto events with other "good" physics objects, like leptons

The searches focus in look for excess in different regions of high MET, and in case of absence of excess, exclusion limits are extracted for the model

Mono-Jet

Mono-Higgs (bb)

Models in which the higgs couples to dark sector particles, e.g. higgs couplings to the mediator

- Not ISR (small coupling)
- Mainly Simplified Models:
 - s-channel vector mediator radiating Higgs
- Other models considered:
 - s-channel scalar mediator radiating Higgs
 - Z'-2HD simplified model
 - scalar 2HD simplified model
 - Additional parameters as: g_{Z'Z'h}, mixing angles..

Masses of the Z' are excluded up to 2.8 TeV depending on the choices for other model parameters.

ATLAS CONF-2018-39

New phenomena in dijet

If there is a mediator that couples to quarks and DM then we can forget about the DM and look for the mediator. Many BSM models that predict dijet excesses (Quantum black holes, excited quarks, and W' and Z' bosons)

2 high p_{τ} jets, m_{jj} is the discriminant, search for bump (resonance) on a smooth, falling background. Background modelled by a parametrized function.

BumpHunter interval

m_{ii} [TeV]

 $q^*, m_{a^*} = 4.0 \text{ TeV}$

 $q^*, m_{q^*}^{9} = 5.0 \text{ TeV}$

Events

10⁷

10⁶

10⁵

10

10³

10

10

Significance

*q**, σ×0.1 *p*-value = 0.8 Fit Range: 1.1 - 8.1 TeV

 $|y^*| < 0.6$

Recent results from **resolved** dijet system. SM physics provides the boost, so the recoiling object is model-independent. Photon+dijet including new b-tagged channels.

Phys. Lett. B 795 (2019) 56, ATL-CONF-2018-052 23/32

Standard dijet search sensitive to $m_{jj} \ge 1$ TeV limited by trigger thresholds.

At Z' masses below ~ 200 GeV, resonance jets merge in large-R jet

New phenomena in dijet

It is also possible to use a Trigger-level search, with dedicated data stream, to go down to 450 GeV

- Coupling values above the solid lines excluded, as long as the signals are narrow enough to be detected using these searches.
- The boosted dijet+ISR analysis has the best reach for low masses, excluding mediator at ~100 GeV
- Mediator excluded at ~ 2.6 TeV

High-mass resonances decaying into leptonic states

New spin-1 vector bosons (W', Z') explored

Search program for long-lived massive particles

p

Heavy neutral leptons (HNL) $\mu^- \nu_e$ Prompt muon from the W boson + displaced vertex (DV) with low p_T tracks leptons. Approx. 0 background search

Pixel Layer-2

Track

Secondary Vertex

Search for exotic particles

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ, γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ m Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ \geq 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ nulti-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ \hline \\ 2 \ j \\ \geq 2 \ j \\ = 3 \ j \\ \hline \\ el \\ \geq 1 \ b, \geq 1 J \\ \geq 2 \ b, \geq 3 \end{array}$	Yes - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$\begin{tabular}{ c c c c c c } \hline M_D & $7.7 \ TeV & $n=2$ \\ \hline M_S & $8.6 \ TeV & $n=3 \ HLZ \ NLO & $n=3 \ HLZ \ NLO & $n=6$ \\ \hline M_{th} & $8.9 \ TeV & $n=6$ \\ \hline M_{th} & $9.5 \ TeV & $n=10$ \\ \hline M_{th} & $1.8 \ TeV & $TeV & $TeV \ TeV & 1.1 \\ \hline M_{th} & 1.1 \\ \hline M_{th$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to \tau\tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to tt \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm SSM} \ W' \to \tau\nu \\ {\rm HVT} \ V' \to WZ \to qqqq \ {\rm model} \ {\rm B} \\ {\rm HVT} \ V' \to WH/ZH \ {\rm model} \ {\rm B} {\rm n} \\ {\rm LRSM} \ W_R \to tp \\ {\rm LRSM} \ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \text{nulti-channel} \\ 2 \ \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1J/ - 2 J el el el 1 J	- - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV V' mass 3.0 TeV W' mass 3.0 TeV V' mass 3.0 TeV V' mass 3.6 TeV V' mass 3.6 TeV V/ mass 3.6 TeV Wass 3.6 TeV Wass 3.25 TeV Wa mass 3.25 TeV Wa mass 5.0 TeV	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	CI qqqq CI ℓℓqq CI tttt	_ 2 e, μ ≥1 e,μ	2 j ≥1 b, ≥1 j	- Yes	37.0 36.1 36.1	Λ 21.8 TeV η _{LL} Λ 40.0 TeV η _{LL} Λ 2.57 TeV C _{4t} = 4π	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM)	0 e, μ 1) 0 e, μ 0 e, μ 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 01 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1711.03301 1608.02372 1812.09743
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV $\beta = 1$ LQ mass 1.56 TeV $\beta = 1$ LQ ⁴ mass 1.03 TeV $\mathcal{B}(LQ^2_3 \to br) = 1$ LQ ⁴ mass 970 GeV $\mathcal{B}(LQ^2_3 \to tr) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$\begin{array}{c} VLQ\;TT\to Ht/Zt/Wb+X & n\\ VLQ\;BB\to Wt/Zb+X & n\\ VLQ\;BJ\to Wt/Zb+X & vL\\ VLQ\;J\to Wb+X & vL\\ VLQ\;J\to Wb+X & vL\\ VLQ\;B\to Hb+X & vLQ\;QQ\to WqWq & \end{array}$	nulti-chann nulti-chann $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el ≥ 1 b, ≥1 j ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	j Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet T _{5/3} mass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Y mass 1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass 1.21 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ Q mass 690 GeV 690 GeV	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j - -		139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u* and d*, Λ = m(q*) q* mass 5.3 TeV only u* and d*, Λ = m(q*) b* mass 2.6 TeV only u* and d*, Λ = m(q*) t* mass 3.0 TeV Λ = 3.0 TeV v* mass 1.6 TeV Λ = 1.6 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2, Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 3 \text{ TeV}$	1 e, μ 2 μ ,3,4 e, μ (Si 3 e, μ, τ - - - -	≥ 2 j 2 j S) - - - - √s = 13	Yes 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N° mass 560 GeV N _R mass 3.2 TeV $H^{\pm t}$ mass 870 GeV $H^{\pm t}$ mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	part	ial uald	Tuil d	ata		Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Search DM

Dijet searches can exclude mediator masses between 50 GeV and 2.7 TeV for almost whole DM mass range.

Big picture change with the choice of couplings. Dijet and Mono-X constrains weakened if $g_a = 0.25 \rightarrow 0.1$

Comparison to direct

Rates of DM production are used to calculate (model dependent) interaction cross sections of other processes involving DM particles.

Strong limits for low-mass DM-nucleon cross section.

Collider limits stronger than direct detection for spin-dependent interactions.

Model dependent comparisons, different for different coupling values.

HL-LHC & ATLAS

ATLAS upgrades include

- DAQ and trigger systems (L1 and HLT 10 kHz)
- Inner tracker (ITk): new all-Si tracker with $|\eta|$ <4.0
- Electronics upgrade for LAr and Tile calorimeters, muon system
- New muon chamber in the inner endcap region
- High granularity timing detector in endcap 30 ps timing resolution

<µ> ~200 tī events

Physics prospects HL-LHC

ATL-PHYS-PUB-2018-043

With 3000/fb, the discovery potential and the exclusion limits on the mediator mass are 2.5 -3 TeV depending on uncertainties

Conclusions

Very extensive set of BSM analyses but no evidence for any new physics yet
 masses in simplified models reaching the natural 2 TeV limit

- Up to now searches in ideal models based on simple BR assumption and / straightforward parameter values
 - unexplored phase space for lower masses in more complicated scenarios
- In the near future more data is to be added ($\sim 150 300 3000$ fb⁻¹)
 - many unconventional signatures and models to be explored
 - not only accumulate luminosity but improvements in performances and new analysis strategies and techniques

straightforward

unconventional

H. Wahlberg. Dark Side of the Universe 15 -19 July 2019 Buenos Aires, Argentina

Backup slides