### The Dark Matter distribution of the Milky Way (its uncertainties and consequences on the determination of new physics) An empirical approach

### Fabío Iocco

ICTP-SAIFR, São Paulo Federíco II, NAPOLI





DSU 2019, July 17 Buenos Aires

# A story of LCDM the single halo

### A "universal" DM profile?



#### NAVARRO-FRENK-WHITE

 $\rho(R) \propto \frac{R_s}{R} \left( 1 + \frac{R}{R_s} \right)^{-2}$ 

### A story of LCDM the dark matter distribution



#### generalized NFW

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

See talks by J. Navarro S. White

# A story of LCDM the small scale problems

#### Cusp vs core



#### Missing satellite



#### Too big to fail



#### ...and more:

See talk by J. Navarro

# And now for something completely different: the Milky Way



The road to Zeus' home on Olympus The sacred path of Iberian pilgrims An average-sized 10^12 Msun spiral, but the truth is



# The Milky Way: una mirada desde el Sur





...Ya nunca alumbraré con las estrellas nuestra marcha sin querellas por las noches de Pompeya...

e.g [H. Manzi], and many others...



### What is the <u>actual</u> distribution of DM in the Milky Way?



### And most notably in the proximity of the Sun?

Some additional hints on why you would care, later on. Bear with me (but you should know, really)...

### Empirical determination of local DM density



### Local determination of $\rho_0$



Vertical motion of stars in local region O(100pc) provides total Grav Pot Subtracting visible (stellar) contribution Obtain (or not) DM without assumption on it presence

### Inferring the DM density structure

#### Fitting a pre-assigned shape on top of luminous



[many autors, e.g. locco et al. 2011]

gNFW  

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$
  
 $\rho_{DM}(R) \propto \rho_0 \exp\left[-\frac{2}{\gamma} \left(\left(\frac{R}{R_s}\right)^{\gamma} - 1\right)\right]$ 
Einasto



## Dark Matter in the Milky Way: a purely observational approach

Fabío Iocco

Work started with: *Míguel Pato, Gíanfranco Bertone* (2011-2015) and continued with: *María Beníto, Ekaterína Karukes* (2016-2019)

### The case of the Milky Way: ingredients

- The observed rotation curve
- The "expected" rotation curve
- Some "grano salis"
- Working hypothesis (later on)

#### The Milky Way: observed rotation curve II. tracers



- $(H_2O, CH_3OH, ...)$ 3. masers
- 3. parallax



#### The Milky Way: observed rotation curve III. curve



Data compilation by [Sofue et al, '08]

#### The Milky Way: observed rotation curve II'. data again (a new compilation)

|        | Object type                    | $R \ [kpc]$ | quadrants | # objects |
|--------|--------------------------------|-------------|-----------|-----------|
|        | HI terminal velocities         |             |           |           |
|        | Fich+ '89                      | 2.1 - 8.0   | 1,4       | 149       |
|        | Malhotra '95                   | 2.1 - 7.5   | 1,4       | 110       |
|        | McClure-Griffiths & Dickey '07 | 2.8 - 7.6   | 4         | 701       |
|        | HI thickness method            |             |           |           |
|        | Honma & Sofue '97              | 6.8 - 20.2  | -         | 13        |
|        | CO terminal velocities         |             |           |           |
|        | Burton & Gordon '78            | 1.4 - 7.9   | 1         | 284       |
|        | Clemens '85                    | 1.9 - 8.0   | 1         | 143       |
| gas    | Knapp+ '85                     | 0.6 - 7.8   | 1         | 37        |
|        | Luna+ '06                      | 2.0 - 8.0   | 4         | 272       |
|        | HII regions                    |             |           |           |
|        | Blitz '79                      | 8.7 - 11.0  | 2,3       | 3         |
|        | Fich+ '89                      | 9.4 - 12.5  | 3         | 5         |
|        | Turbide & Moffat '93           | 11.8 - 14.7 | 3         | 5         |
|        | Brand & Blitz '93              | 5.2 - 16.5  | 1,2,3,4   | 148       |
|        | Hou+ '09                       | 3.5 - 15.5  | 1,2,3,4   | 274       |
|        | giant molecular clouds         |             | _,_,_,_   |           |
|        | Hou+ '09                       | 6.0 - 13.7  | 1,2,3,4   | 30        |
|        | open clusters                  |             |           |           |
|        | Frinchaboy & Majewski '08      | 4.6 - 10.7  | 1,2,3,4   | 60        |
|        | planetary nebulae              |             |           |           |
|        | Durand+ '98                    | 3.6 - 12.6  | 1,2,3,4   | 79        |
| atoma  | classical cepheids             |             |           |           |
| stars  | Pont+ '94                      | 5.1 - 14.4  | 1,2,3,4   | 245       |
|        | Pont+ '97                      | 10.2 - 18.5 | 2,3,4     | 32        |
|        | carbon stars                   |             |           |           |
|        | Demers & Battinelli '07        | 9.3 - 22.2  | 1,2,3     | 55        |
|        | Battinelli+ '13                | 12.1 - 24.8 | 1,2       | 35        |
| masers | masers                         |             |           |           |
|        | Reid+ '14                      | 4.0 - 15.6  | 1,2,3,4   | 80        |
|        | Honma+ '12                     | 7.7 - 9.9   | 1,2,3,4   | 11        |
|        | Stepanishchev & Bobylev '11    | 8.3         | 3         | 1         |
|        | Xu+ '13                        | 7.9         | 4         | 1         |
|        | Bobylev & Bajkova '13          | 4.7 - 9.4   | 1,2,4     | 7         |

[Iocco, Pato, Bertone, Nature Physics 2015] [Pato & FI, arXivV:1703.00020, Software X (2017)]

# The Milky Way Rotation Curve as observed



All tracers, optimized for precision between R=3-20 kpc

### The Milky Way:

# "expected" rotation curve

from visible (baryon) component

$$\Phi_{\mathsf{baryon}}$$
 =  $\Phi_{\mathsf{bulge}}$ +  $\Phi_{\mathsf{disk}}$ +  $\Phi_{\mathsf{gas}}$ 

$$ho_i(x,y,z) o \phi_i(r, heta,arphi) o v_{c,i}^2(R) = \sum_arphi R rac{d\phi_i}{dr}(R,\pi/2,arphi)$$

Constructing the curve expected from observed mass profiles

#### The Milky Way: expected rotation curve 1. the baryonic components



The luminous Milky Way: observations of morphology

| 2. BARYONS: ST                 | ELLAR BULGE                        | 0           | •            |                  |  |  |  |  |
|--------------------------------|------------------------------------|-------------|--------------|------------------|--|--|--|--|
|                                | $ ho_{ m bulge} =  ho_0 f(x)$      | ,y,z)       |              |                  |  |  |  |  |
| <b>morphology</b> $f(x, y, z)$ |                                    |             |              |                  |  |  |  |  |
| Stanek+'97 (E2)                | $e^{-r}$                           | 0.9:0.4:0.3 | $24^{\circ}$ | optical          |  |  |  |  |
| Stanek+ '97 (G2)               | $e^{-r_{s}^{2}/2}$                 | 1.2:0.6:0.4 | $25^{\circ}$ | optical          |  |  |  |  |
| Zhao '96                       | $e^{-r_s^2/2}+r_a^{-1.85}e^{-r_a}$ | 1.5:0.6:0.4 | $20^{\circ}$ | infrared         |  |  |  |  |
| Bissantz & Gerhard '02         | $e^{-r_s^2}/(1+r)^{1.8}$           | 2.8:0.9:1.1 | $20^{\circ}$ | infrared         |  |  |  |  |
| Lopez-Corredoira+ '07          | Ferrer potential                   | 7.8:1.2:0.2 | $43^{\circ}$ | infrared/optical |  |  |  |  |
| Vanhollebecke+ '09             | $e^{-r_s^2}/(1+r)^{1.8}$           | 2.6:1.8:0.8 | $15^{\circ}$ | infrared/optical |  |  |  |  |
| Robin+ '12                     | ${ m sech}^2(-r_s)+e^{-r_s}$       | 1.5:0.5:0.4 | $13^{\circ}$ | infrared         |  |  |  |  |
|                                |                                    |             |              |                  |  |  |  |  |

normalisation  $\rho_0$ microlensing optical depth:  $\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$ ,  $(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$ (MACHO '05) The luminous Milky Way: observations of morphology

#### 2. BARYONS: STELLAR DISK

$$ho_{
m disk}=
ho_0f(x,y,z)$$

morphology f(x, y, z)

| Han & Gould '03             | $e^{-R} \mathrm{sech}^2(z) \ e^{-R- z }$    | 2.8:0.27<br>2.8:0.44             | $	extsf{thin}$        | optical |
|-----------------------------|---------------------------------------------|----------------------------------|-----------------------|---------|
| Calchi-Novati & Mancini '11 | $e^{-R- z } e^{-R- z }$                     | 2.8:0.25<br>4.1:0.75             | thin<br>thick         | optical |
| deJong+ '10                 | $e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.75/2}$ | 2.8:0.25<br>4.1:0.75<br>1.0:0.88 | thin<br>thick<br>halo | optical |
| Jurić+ '08                  | $e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.77/2}$ | 2.2:0.25<br>3.3:0.74<br>1.0:0.64 | thin<br>thick<br>halo | optical |
| Bovy & Rix '13              | $e^{-R- z }$                                | 2.2:0.40                         | single                | optical |

normalisation  $\rho_0$ 

local surface density:  $\Sigma_* = 38 \pm 4 M_{\odot}/pc^2$  [Bovy & Rix '13]

### The luminous Milky Way: observations of morphology



uncertainties

CO-to-H<sub>2</sub> factor:  $X_{\rm CO} = 0.25 - 1.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r < 2 \text{ kpc}$  $X_{\rm CO} = 0.50 - 3.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r > 2 \text{ kpc}$ 

[Ferrière+ '07, Ackermann '12]

### The luminous Milky Way: expected rotation curve

$$egin{aligned} egin{aligned} \phi_i(r, heta,arphi) = -4\pi G \sum_{l,m} rac{Y_{lm}( heta,arphi)}{2l+1} \left[ rac{1}{r^{l+1}} \int_0^r 
ho_{i,lm}(a) a^{l+2} da + r^l \int_r^\infty 
ho_{i,lm}(a) a^{1-l} da 
ight] \end{aligned}$$



#### The Milky Way: testing expectactions (with no additional assumptions)



[Iocco, Pato, Bertone, Nature Physics 2015]

## Systematic uncertainties (luminous component)



[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017]

[Iocco, Pato, Bertone, Nature Physics 2015]

# Extracting the DM density structure



### What to do of our measurement? (Our instrument is very precise. Is it accurate?)



[E. Karukes, M. Benito, F. Iocco, A. Geringer-Sameth, R. Trotta] arXiv:1901.02463 full Bayesian framework, test of data consistency, more to in the paper when what telling you here

### The Milky Way:

Observed rotation curve Neglecting some quite remarkable uncertainties (for now)



$$v_{ ext{LSR}}^{ ext{l.o.s.}} = \left(rac{v_c(R')}{R'/R_0} - v_0
ight) \cos b \sin \ell$$

observing tracers from our own position, transforming into GC-centric reference frame

# How to reconstruct DM density profile in Galactic Bulge region?

Iocco & MB Physics of the Dark Universe 15 (2017)

Most of the galaxy's light comes from stars and gas in the galactic disk and central bulge...

### $(x,y,z)=(\pm 2.2,\,\pm 1.4,\,\pm 1.2)\,{\rm kpc}$

### **Total mass**

 $M_{total} = (1.85 \pm 0.05) \times 10^{10} \,\mathrm{M_{\odot}}$ 

Portail + MNRAS 465 (2017) **Stellar mass** 

 $M^i_* = \int_{box} \rho^i_*(x, y, z) \,\mathrm{d}V$ 

#### Methodology Allowed DM mass

 $\underline{\times 10}^{10}$ 

2.0

 $1.5^{-1}$ 

1.0

0.5

0.0-

-0.5

M  $[M_{\odot}]$ 

$$M_{total} - M^{i}_{*} = M^{i}_{DM}$$
$$\sigma_{M^{i}_{DM}} = \sqrt{\sigma^{2}_{M_{total}} + \sigma^{2}_{M^{i}_{*}}}$$

 $M_* = (1.1 - 1.7) \times 10^{10} M_{\odot}$  $M_{\rm DM} = (0.1 - 0.7) \times 10^{10} M_{\odot}$ 

#### DM mass corresponds to 7-37%



 $M_{total} = (1.85 \pm 0.05) \times 10^{10} M_{\odot}$ 

Baryonic Morphology

#### gNFW density profile

$$\rho_{DM}(r) = \rho_0 \left(\frac{R_0}{r}\right)^{\gamma} \left(\frac{R_s + R_0}{R_s + r}\right)^{3-\gamma}$$

Study parameter space that gives a mass in excess or defect with respect to the allowed DM mass

#### Galactic Bulge Region - Results: varying bulge morphology



### Direct and indirect searches of WIMP DM complementary to colliders

Direct detection: DM scattering against nuclei, recoil

#### **Indirect detection:**

Annihilation in astrophysical envir. Observation of SM products of annih.

Production at LHC





### Indirect Detection: principles and dependencies

### $\chi + \chi \rightarrow q\bar{q}, W^+W^-, \ldots \rightarrow \gamma, \bar{p}, \ \bar{D}, \ e^+ \& \nu's$



 $F_i \propto \frac{1}{4\pi d^2} B_i \frac{\langle \sigma v \rangle}{m_{\chi}} \int \rho^2(r) dV$ 

# Direct Detection: principles and dependencies (to go...)



#### you need this

dR $\overline{dE} \propto$  $\mu^2$ 

See talk by A. Ibarra

# Extracting the DM density structure



### But do Galactic uncertainties affect PP, for real?



 $J_{annih} \propto \int_{los} \rho^2(r) dV$ 

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017, arXiv:1612.02010]

### It is well known that uncertainties affect inDirect (some more, some less) and its interpretation



[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017, arXiv:1612.02010]

### It is well known that uncertainties affect Direct Detection



Current LUX limits, but varying astrophysical uncertainties

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017, arXiv:1612.02010]

### The effect of astrophysical uncertainties on the determination of new physics

### Uncertainties accounted for:

#### Calore analysis:

observed GC signal (only stat. on gamma flux)

This analysis:

observed GC signal + DM density profile (Gal. Param. + Morphologies + stat)

Ready-to-use likelihood publicly available @

https://github.com/mariabenitocst/ UncertaintiesDMinTheMW

> [Benito, Cuoco, Iocco, JCAP arXiv:1901.02460]



### Let's quantify this effect in a specific case: Singlet Scalar DM

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

$$egin{aligned} v_H &= 246 ext{ GeV } \langle S 
angle &= 0 \ m_S^2 &= 2\,\mu_S^2 + \lambda_{HS}\,v_H^2 \end{aligned}$$

"WIMP phenomenology" entirely dictated by the Higgs coupling and physical DM mass.

[Mc Donald, 1994] [Burgess, Pospelov, Velthuis, 2001]

### Singlet Scalar DM Constraints and interplay of experiments



### Singlet Scalar DM Constraints and interplay of experiments

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$



### Let's look at the effect of astrophysics uncertainties: Direct Detection



[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017; arXiv:1612.02010]

### Let's look at the effect of astrophysics uncertainties: Direct Detection



[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017; arXiv:1612.02010]

### Let's look at the effect of astrophysics uncertainties: Indirect Detection





[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017; arXiv:1612.02010]

# Cuncta stricte

• Determining the local DM density from actual data is possible.

- RC method is accurate and precise, in spite of large range of observational systematic and statistical uncertainties.
- Slope (i.e. full profile of MW) is not very accurate, and quite depending from several systematics.
- Astrophysical uncertainties are actually affecting determination of PP, in virtuous interplay with collider physics, direct and indirect probes.
- Providing a ready-to-use likelihood for PP use, including astrophysical uncertainties on DM distribution

• South American Dark Matter workshop <u>December</u> 2-4, <u>2020</u>

> Third in a successful series (2017, 2018) www.ictp-saifr.org/DMw2018

> Invited speakers have included (e.g.):

Graciela Gelmini Christopher McCabe Cecilia Scannapieco Tomer Volansky



International Centre for Theoretical Physics South American Institute for Fundamental Research São Paulo Brazil (not Rio de Janeiro!)