The $\mu\nu$SSM at the LHC and beyond

Carlos Muñoz

15th DSU, Buenos Aires, July 15-19, 2019
The fact that the Higgs is:

- an elementary scalar
- with a mass of 125 GeV

puts support on the idea of SUSY...

Since scalar particles exist, ..., they produce the hierarchy problem, ..., SUSY solves it and predicts the Higgs with a mass \(\lesssim 140 \text{ GeV} \)
The SUSY standard model with minimal particle content and neutrino masses, contains (at least) the following renormalizable terms:

\[W = \epsilon_{ab} \left(Y^u_{ij} \hat{H}^b_u \hat{Q}^a_i \hat{\bar{u}}^c_j + Y^d_{ij} \hat{H}^a_d \hat{Q}^b_i \hat{\bar{d}}^c_j + Y^e_{ij} \hat{H}^a_d \hat{L}^b_i \hat{\bar{e}}^c_j + Y^\nu_{ij} \nu^c_j \hat{H}^b_u \hat{\bar{L}}^a_i \right) \]

where we kill the bilinear terms with a discrete \(Z_3 \) symmetry (like the one imposed in the NMSSM)

Actually, this is the case of the low-energy limit of string constructions, where only trilinear couplings are present: we are left with an accidental \(Z_3 \) symmetry.

Since \(H_d \) and \(L \) have the same SM quantum numbers, \(Y = -1/2 \)

\[\lambda''_{i12} \hat{u}^c_i \hat{d}^c_j \hat{d}^c_k + \lambda'_{ijk} \hat{\bar{l}}_i \hat{Q}_j \hat{d}^c_k + \lambda_{ijk} \hat{\bar{l}}_i \hat{\bar{l}}_j \hat{e}^c_k + \lambda_j \nu^c_j \hat{H}_u \hat{\bar{H}}_d + \kappa_{ijk} \nu^c_i \nu^c_j \nu^c_k \]

- By construction, SUSY produces fast proton decay

unless e.g. \(\lambda''_{imk} \lambda'_{1lk} \lesssim 10^{-25} \)

\(\langle \tilde{\nu}_i \rangle \sim \text{TeV} \)

Lopez-Fogliani, C. M., PRL 2006

\[\mu \nu \text{SSM} \]
To conserve B and L number, one can impose by hand a discrete symmetry (R parity)

Particle \longrightarrow Particle
Sparticle \longrightarrow $-$ Sparticle

i.e. sparticles must appear in pairs

This conservative approach (RPC) forbids all these couplings

May be is too much... the terms with neutrinos are harmless for proton decay

Besides, $D=5$ (n.r.) proton-decay operators are not forbidden by R parity:

$$\frac{1}{\Lambda}
(k_{ijkl} \hat{Q}_i \hat{Q}_j \hat{Q}_k \hat{L}_l + k'_{ijkl} \hat{u}_i^c \hat{u}_j^c \hat{d}_k^c \hat{e}_l^c) \quad \Lambda \sim 10^{-19} \text{GeV} \quad \rightarrow \quad k_{112l} \sim 10^{-7}$$
\[W = \epsilon_{ab} \left(Y^{ij}_{u} \hat{H}^b_u \hat{Q}^a_i \hat{\bar{u}}^c_j + Y^{ij}_{d} \hat{H}^b_d \hat{Q}^b_i \hat{\bar{d}}^c_j + Y^{ij}_{e} \hat{H}^a_d \hat{L}^b_i \hat{\bar{e}}^c_j + Y^{ij}_{\nu} \hat{\nu}^c_j \hat{H}^b_u \hat{\bar{L}}^a_i \right) + \]

\[\lambda''_{ijk} \hat{u}^c_i \hat{d}^c_j \hat{d}^c_k + \lambda'_{ijk} \hat{\bar{L}}^i \hat{\bar{Q}}^j \hat{d}^c_k + \lambda_{ijk} \hat{\bar{L}}^i \hat{\bar{L}}^j \hat{e}^c_k + \lambda_j \hat{\nu}^c_j \hat{H}^b_u \hat{\bar{H}}^c_d + \kappa_{ijk} \hat{\nu}^c_i \hat{\nu}^c_j \hat{\nu}^c_k \]

But the choice of R-parity is \textit{ad hoc}.

There are other discrete symmetries that forbid some of these terms, but others are allowed

\textit{e.g.} \(Z_3 \) Baryon parity forbids only the \textit{B number violating operator}

\[(\hat{Q}, \hat{\bar{u}}^c, \hat{\bar{d}}^c) \longrightarrow (\hat{Q}, \hat{\bar{u}}^c, \hat{\bar{d}}^c) \]

\[(\hat{L}, \hat{e}^c, \hat{H}^c_d, \hat{H}^c_u, \hat{\nu}^c) \longrightarrow (\hat{L}, \hat{e}^c, \hat{H}^c_d, \hat{H}^c_u, \hat{\nu}^c) \]

The only “discrete gauge” anomaly free symmetry that also forbids the D=5 operators \(\text{Ibáñez, Ross, 91} \)

\textit{Also stringy selection rules. E.g. in the heterotic string:}

- particles are attached to different sectors in the compact space
- or they have U(1) charges (with the extra U(1)s broken by a FI D-term)

\(\text{Casas, C.M., PLB 1988} \)

\(\text{Font, Ibáñez, Nilles, Quevedo, PLB 1988} \)
NMSSM limit

\[\mathbf{Y_v} \rightarrow 0 \quad \mathbf{\nu^c} \text{ are ordinary singlets with } \langle \tilde{\nu}_i^c \rangle \sim \text{TeV} \]

and R-parity is conserved (in the limit \(\lambda'_{ijk} = \lambda_{ijk} = 0 \))

\[W = \epsilon_{ab} \left(Y_u^{ij} \hat{H}_u^b \hat{Q}_i^a \hat{u}_j^c + Y_d^{ij} \hat{H}_d^a \hat{Q}_i^b \hat{d}_j^c + Y_e^{ij} \hat{H}_d^a \hat{L}_i^b \hat{e}_j^c + Y_{\nu}^{ij} \nu_j^c \hat{H}_u^b \hat{L}_i^a \right) \]

\[+ \lambda'_{ijk} \hat{L}_i^j \hat{Q}_d^k + \lambda_{ijk} \hat{L}_i^j \hat{L}_j^k \hat{e}^c \]

But if \(\mathbf{Y_v} \lesssim 10^{-6} \) of the order of the electron Yukawa

\[m_\nu \sim \frac{m_D^2}{M_M} = (\mathbf{Y}_v \langle H_u^0 \rangle)^2 / k\langle \tilde{\nu}_i^c \rangle \lesssim (10^{-6} 10^2)^2 / 10^3 = 10^{-11} \text{ GeV} = 10^{-2} \text{ eV} \]

\(\text{RPV, which is driven by } \mathbf{Y_v} \lesssim 10^{-6}, \text{ is then small in the } \mu \nu\text{SSM} \)

\[\text{solves the } \nu \text{ problem: How to accommodate the neutrino data} \]

\[\text{solves the } \mu \text{ problem: What is the origin of } \mu \ll M_{\text{Planck}} \]

\[\text{No ad-hoc scales: Only the EW scale generated by soft terms} \]

\(\text{TRpV do not introduce modifications in our analyses of the } \mu \text{ and } \nu \text{ problems (might modify the phenomenology)} \)
In a sense, this gives a natural answer to the question why the mixing angles are so different in the quark vs. lepton sector (because no generalized seesaw exists for the quarks).
Besides, concerning $\mu \nu$SSM cosmology:

Gravitino is a dark matter candidate

K.Y. Choi, D.E. López-Fogliani, C. M., R. Ruiz de Austri, JCAP 2010

Axino dark matter is also possible:

EW phase transition is sufficiently strongly first order to realize electroweak baryogenesis

Concerning $\mu\nu$SSM LHC phenomenology, because of RPV:

- Any particle can be the LSP, since the LSP decays to SM particles: stau, squark, neutralino,..., sneutrino.

- There is no missing energy as a special signal.
 which in view of the current experimental bounds on RPC models...

- Novel signals with multiHiggses (H_u, H_d, sneutrinos)
 displaced vertices,
 multi-lepton final states,
 multi-jet final states.
The left sneutrinos are special in the \(\mu \nuSSM \)

neutrino physics drives their VEVs to small values

\[\nu_i \sim Y_\nu \nu_u \lesssim 10^{-6} \times 10^2 = 10^{-4} \text{ GeV} \]

Their masses are essentially determined by the soft masses:

\[m^2_{\tilde{\nu}_i} = - A_\nu Y_{\nu_i} \nu_u + \ldots \]

\[m^2_{\tilde{\nu}_i} = \frac{Y_{\nu_i} \nu_u}{\nu_i} \nu_R (- A_\nu + \ldots) \]

neutrino physics drives their masses, thus we expect some generation to be light

\[m_{\tilde{\tau}} \sim 100 \text{ GeV} \]
\[M_{\tilde{\nu}_e, \mu} \sim 1000 \text{ GeV} \]

e.g. the hierarchy \(Y_{\nu_3} \sim 10^{-8} - 10^{-7} < Y_{\nu_1,2} \sim 10^{-6} \)

We have normal ordering with the gaugino seesaw as the dominant one for the third family

\(\tilde{\nu}_\tau \) LSP specially interesting because \(Y_\tau \) is large implying large BRs for its decay to leptons

Carlos Muñoz
UAM & IFT

\[\mu \nuSSM \]
Bound on the mass of a **tau left sneutrino LSP** from LHC data?

(in the $\mu\nu$SSM)

Ghosh, Lara, Lopez-Fogliani, C. M., Ruiz de Austri, IJMPA 2018

$\widetilde{\nu}_\tau$ LSP **directly produced**
giving rise to multileptons

Stau is the natural NLSP

Main decay channels are:

$$\Gamma(\widetilde{\nu}_\tau \to \tau \ell) \approx \frac{m_{\widetilde{\nu}_\tau}}{16\pi} \left(\frac{Y_{\nu_\ell}}{3\lambda} \right)^2 \sum_i \Gamma(\widetilde{\nu}_\tau \to \nu_\ell \nu_i) \approx \frac{m_{\widetilde{\nu}_\tau}}{16\pi 2M^2} \sum_i \psi_i^2.$$

Decays are controlled by the neutrino seesaw

$$m_{\widetilde{\nu}_\tau} \sim 45 - 100 \text{ GeV} \quad \text{have decay lengths} \quad \sim \text{ mm}$$

DISPLACED
There are at present no experimental analyses focused on the $\mu\nu$SSM

We recast the result of the ATLAS 8-TeV **dilepton** search to constrain our scenario

Lara, Lopez-Fogliani, C. M., Nagata, Otono, Ruiz de Austri, PRD 98 (2018) 075004

In the figures, one of the two vertices can also be a two-neutrino vertex

Carlos Muñoz
UAM & IFT

The ATLAS displaced-vertex search is sensitive to decay lengths $c\tau \gtrsim \text{mm}$

Their limits can be translated into a vertex-level efficiency: Larger $c\tau$ better efficiency

$\mu\nu$SSM
ATLAS analysis requires high thresholds for lepton momenta. Triggers do not utilize the tracking information:

- One μ- with $p_T > 50$ GeV, one e- with $p_T > 120$ GeV or two e- with $p_T > 40$ GeV each

But $m_{\nu\tau} < 100$ GeV and low boosted decay products with momenta of a few tens of GeV

To analyze better the events with $\mu\mu/e\mu$ pairs for the 8-TeV searches, we proposed an optimization of the trigger requirements by means of a high level trigger that exploits tracker information: mu24i (ATLAS collaboration EPJC 75, 2015)

- At least one μ- with $p_T > 24$ GeV

To study the prospects for the 13-TeV searches we also considered an optimization (ATLAS collaboration EPJC 77, 2017)

- At least one e- or μ- with $p_T > 26$ GeV allowing the detection of events with ee pairs

$$
\#\text{Dimuons} = \left[\sigma(pp \rightarrow Z \rightarrow \tilde{\nu}_T \tilde{\nu}_T) \epsilon^Z_{\text{sel}} + \sigma(pp \rightarrow W \rightarrow \tilde{\nu}_T \tilde{\nu}_T) \epsilon^W_{\text{sel}} + \sigma(pp \rightarrow \gamma, Z \rightarrow \tilde{\nu}\tilde{\nu}) \epsilon_{\gamma Z} \right] \times \mathcal{L} \times \left[\text{BR}(\tilde{\nu}_T \rightarrow \mu\mu) \, \epsilon_{\text{vert}}^{\mu\mu}(cT_R) + \text{BR}(\tilde{\nu}_T \rightarrow \mu\mu) \, \epsilon_{\text{vert}}^{\mu\mu}(cT_L) \right].
$$
Scans using Multinest algorithm as optimizer, searching for points reproducing the current experimental data on:

- **Neutrino physics**

 \[
 \sin^2 \theta_{12,13,23} = 0.275-0.35, 0.02045-0.02439, 0.418-0.627 \\
 \Delta m^2_{21,31} = (6.79-8.01) \times 10^{-5}, (2.427-2.625) \times 10^{-3} \text{ eV}^2
 \]

- **Higgs physics** interfaced with HiggsBounds & HiggsSignals

- **Flavor observables**

 \(b \rightarrow s\gamma, B \rightarrow \mu\mu, \mu \rightarrow e\gamma, \mu \rightarrow eee\)

 To compute the spectrum and observables SARAH is used to generate a SPheno version of the \(\mu\nu\text{SSM}\)

 Samples of simulated events are generated using MadGraph and PYTHIA
A tau sneutrino LSP $\lesssim 100$ GeV implies that the tau neutrino Yukawa is the smallest driving neutrino physics to dictate:

- the range of $M_2 = (2g'^2 + g^2)M$:
 - (S_1) 236-1514 GeV
 - (S_2) 169-1431 GeV
- and that the muon neutrino Yukawa is the largest

As a consequence the most important contribution to the dilepton BRs comes from the channel sneutrino to tau muon

$$\Gamma (\tilde{\nu}_\tau \to \tau \ell) \approx \frac{m_{\tilde{\nu}_\tau}}{16\pi} \left(\frac{Y_{\nu_\tau}}{3\lambda} \right)^2.$$
All points (blue&red) fulfill the exp. data with
\[m_{\tilde{\nu}_\tau} \in (45 - 100) \text{ GeV} \]

\[M_2 = (2g'^2 + g^2)M ~\in (236-1514) \text{ GeV} \] to fulfill neutrino physics

No points of the $\mu\nu$SSM can be probed using the 8-TeV data with 20.3 fb$^{-1}$

Red points can be probed in the 13 TeV search with 300 fb$^{-1}$ run 3:
channels $\mu\mu$, μe, ee producing a sufficient number of displaced dilepton events

BRs smaller for S_2 because λ is larger, $\tan \beta$ smaller, Y_{ν_2} smaller

Still a significant number of red points because of the larger decay lengths, implying larger vertex-level efficiency

\[M_2 \in (169-1431) \text{ GeV} \]
Summarizing:

Red points can be probed at LHC run 3 with:

\[M_2 = (2g'^2 + g^2)M \]

\[m_{\tilde{\nu}_\tau} \in (63-91) \text{ GeV} \]
\[M_2 \in (363-1483) \text{ GeV} \]
\[m_{\tilde{\nu}_\tau} \in (63-95) \text{ GeV} \]
\[M_2 \in (427-1431) \text{ GeV} \]

We thus highly motivate both the ATLAS and CMS collaborations to take account of this option of optimizing the triggers seriously.
We have discussed a realistic SUSY model, the $\mu\nu$SSM:

- Solves the μ problem
- Accommodates easily the ν data through a generalized EW seesaw
- Does not introduce any new particle apart from RH neutrinos
- Everything occurs at the electroweak scale
- The gravitino can be a candidate for dark matter
- Electroweak baryogenesis is possible
- Concrete novel signals at colliders with multi-Higgses – displaced/prompt vertices, multi-lepton/jets final states
- LSP lifetime is connected to neutrino physics

However, there is still a lack of LHC bounds on the masses of the sparticles in the $\mu\nu$SSM.

For the near future, it would be interesting to analyze whether we can recast ATLAS & CMS analyses run 2 to put bounds on the masses of other possible LSPs like stop, gluino, right stau, …