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Figure 9: Mass contours and composition of nearly pure LSP states in the MSSM [93].

parameter space, as does the Higgsino combination S̃0. Both of these light states are now
experimentally excluded.

The relic abundance of LSP’s is determined by solving the Boltzmann equation for the
LSP number density in an expanding Universe. The technique[98] used is similar to that
for computing the relic abundance of massive neutrinos[99]. The relic density depends on
additional parameters in the MSSM beyond M2, µ, and tan β. These include the sfermion
masses, mf̃ , the Higgs pseudo-scalar mass, mA, and the tri-linear masses A as well as two
phases θµ and θA. To determine, the relic density it is necessary to obtain the general
annihilation cross-section for neutralinos. This has been done in [100, 101, 102, 103]. In
much of the parameter space of interest, the LSP is a bino and the annihilation proceeds
mainly through sfermion exchange as shown in Figure 10. For binos, as was the case for
photinos [23, 97], it is possible to adjust the sfermion masses to obtain closure density in a
wide mass range. Adjusting the sfermion mixing parameters [104] or CP violating phases
[34, 35] allows even greater freedom.
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Figure 10: Typical annihilation diagram for neutralinos through sfermion exchange.
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Constrained Models (CMSSM)

Gaugino mass Unification

MSSM with R-Parity (still more than 100 parameters)

contain first derivatives of fields, we have

∂µ

(
∂LMSSM

∂ (∂µΦi)
δΦi

)
= ∂µ

(
∂Lsusy

∂ (∂µΦi)
δΦi

)
= ∂µ [Sµ

MSSM + Kµ] (20)

where we recall that ∂µ Kµ is the variation of Lsusy under an infinitesimal supersymmetry
transformation. Therefore

∂µKµ = δLsusy = δLMSSM − δLsoft = δLMSSM −
∂Lsoft

∂Φi
δΦi. (21)

Inserting this equation in eq. (20), and the resulting expression in eq. (19), we obtain

δLMSSM =

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]
δΦi + ∂µ Sµ

MSSM + δLMSSM −
∂Lsoft

∂Φi
δΦi, (22)

or

∂µ Sµ
MSSM =

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi (23)

Inserting this expression in eq. (17), we rewrite the interaction lagrangian between the
MSSM and the light gravitino as

Lint, eff =
i√

3 m3/2 MP

χ̄

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi + h. c. (24)

As we prove in Appendix B, the part in square parenthesis does not contribute to the
amplitudes of physical processes having one light gravitino in the initial or final state (in
short, one can take the on shell expression for ∂µ Sµ

MSSM, since the term in square parenthesis
vanishes on shell; notice that the procedure just outlined provides the on-shell expression
of ∂µ Sµ

MSSM without the need to explicitly work out the equations of motion of the fields
entering in the supercurrent). Namely:

Lint, eff =
i√

3m3/2 MP

χ̄
∂Lsoft

∂Φi
δΦi + h. c. (25)

This is the effective theory for the MSSM-light gravitino interaction in non-derivative form.
To get an explicit expression, we recall the MSSM superpotential and soft supersymmetry
breaking Lagrangian:

W = huH2Quc + hdH1Qdc + heH1Lec + µH2H1 (26)

Lsoft = −
1

2
Mαλαλα − m2

ijφ
i∗φj (27)

−AuhuH2Quc − AdhdH1Qdc − AeheH1Lec − BµH2H1 + h.c.

where generation indices on the matter fields have been supressed. From this, we find

iLint, eff =
i m2

ij√
3MP m3/2

(
χ̄ χi

L φ∗j − χ̄i
L χ φj

)
−

i√
3MP m3/2

[
AjWj,i χ̄ χi

L − (AjWj,i)
∗ χ̄i

L χ
]

−
Mα

4
√

6MP m3/2

F (α)a
µν χ̄ [γµ, γν ] λ(α)a −

i gα Mα√
6MP m3/2

(
φ∗i T a

ij φj
)
χ̄ γ5 λ(α)a (28)
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What happened to weak scale SUSY
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The scalar cross section

where

and

integrating out the heavy quarks

Hadronic matrix elements

where

Xi ≡ η∗11
gmqi

Z∗

χ5−i

2mW Bi
− η∗12eig

′Z∗

χ1,

Yi ≡ η∗11

(
yi

2
g′Zχ1 + gT3iZχ2

)

+ η∗12
gmqi

Zχ5−i

2mW Bi
,

Wi ≡ η∗21
gmqi

Z∗

χ5−i

2mW Bi
− η∗22eig

′Z∗

χ1,

Vi ≡ η∗22
gmqi

Zχ5−i

2mW Bi
+ η∗21

(
yi

2
g′Zχ1 + gT3iZχ2

)

, (4)

with yi, T3i denoting hypercharge and isospin, and

δ1i = Zχ3(Zχ4), δ2i = Zχ4, (−Zχ3) (5)

Bi = sin β(cosβ), Ci = sinα(cosα), Di = cosα(− sinα), (6)

for up (down) type quarks. We denote by mH2
< mH1

the two scalar Higgs masses, and α

denotes the Higgs mixing angle. Finally, we note that the factors ηij arise from the diagonal-

ization of the squark mass matrices: diag(m2
1, m

2
2) ≡ ηM2η−1, which can be parameterized

for each flavour f by an angle θf and phase γf :
(

cos θf sin θfeiγf

− sin θfe−iγf cos θf

)

≡

(

η11 η12

η21 η22

)

. (7)

In the models we study below, the squark flavours are diagonalized in the same basis as the

quarks.

2.2 Hadronic Matrix Elements

The scalar part of the cross section can be written as

σ3 =
4m2

r

π
[Zfp + (A − Z)fn]2 , (8)

where mr is the reduced LSP mass,

fp

mp
=

∑

q=u,d,s

f (p)
Tq

α3q

mq
+

2

27
f (p)

TG

∑

c,b,t

α3q

mq
, (9)

the parameters f (p)
Tq are defined by

mpf
(p)
Tq ≡ ⟨p|mq q̄q|p⟩ ≡ mqBq, (10)

f (p)
TG = 1 −

∑

q=u,d,s f (p)
Tq [?], and fn has a similar expression.
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2 Spin-Independent WIMP-Nucleon Scattering

2.1 Inputs to the Matrix Element Calculation

At zero momentum transfer, and neglecting nuclear structure e↵ects, the spin-independent

cross-section for the elastic scattering of a generic WIMP on a nucleus with charge Z and

atomic number A can be written as [1, 6, 16–21]

�Z,A
SI =

4m2
r

⇡
[Zfp + (A� Z)fn]

2 , (2)

where mr is the reduced WIMP mass,

fN
mN

=
X

q

fN
Tq

↵3q

mq
(3)

for N = p or n, and the quantities fN
Tq

are defined by

mNf
N
Tq

⌘ hN |mq q̄q|Ni ⌘ �q ⌘ mqB
N
q . (4)

We recall that the quantities fN
Tq

(�q) are independent of renormalization scheme and scale,

whereas the quantitiesmq and BN
q appearing have cancelling scheme and scale dependences.

The contributions of the heavy quarks q = c, b, t have often been treated by integrating

them out and replacing them by the one-loop contributions due to scattering o↵ gluons [22],

so that
fN
mN

=
X

q=u,d,s

fN
Tq

↵3q

mq
+

2

27
fN
TG

X

q=c,b,t

↵3q

mq
, (5)

where

fN
TG

= 1�
X

q=u,d,s

fN
Tq
. (6)

In our subsequent analysis, this is the first approach we use to calculate �p,n
SI .

However, as discussed later in more detail, there are by now a number of lattice

calculations of fN
Tc

= mchN |c̄c|Ni/mN = �c/mN , so for comparison we also estimate �p
SI

using the one-loop 4-flavour versions of (5) and (6), where

X

q=u,d,s

!

X

q=u,d,s,c

,
X

q=c,b,t

!

X

q=b,t

,
2

27
!

2

25
, (7)

together with a numerical estimate of fN
Tc

that is based (mainly) on lattice calculations.

As we also discuss later, there are also calculations of fN
Tc
, fN

Tb
and fN

Tt
to O(↵3

s) in

perturbative QCD. These perturbative calculations are expected to be very reliable for fN
Tb
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them out and replacing them by the one-loop contributions due to scattering o↵ gluons [22],

so that
fN
mN

=
X

q=u,d,s

fN
Tq

↵3q

mq
+

2

27
fN
TG

X

q=c,b,t

↵3q

mq
, (5)

where

fN
TG

= 1�
X

q=u,d,s

fN
Tq
. (6)

In our subsequent analysis, this is the first approach we use to calculate �p,n
SI .

However, as discussed later in more detail, there are by now a number of lattice

calculations of fN
Tc

= mchN |c̄c|Ni/mN = �c/mN , so for comparison we also estimate �p
SI

using the one-loop 4-flavour versions of (5) and (6), where

X

q=u,d,s

!

X

q=u,d,s,c

,
X

q=c,b,t

!

X

q=b,t

,
2

27
!

2

25
, (7)

together with a numerical estimate of fN
Tc

that is based (mainly) on lattice calculations.

As we also discuss later, there are also calculations of fN
Tc
, fN

Tb
and fN

Tt
to O(↵3

s) in

perturbative QCD. These perturbative calculations are expected to be very reliable for fN
Tb
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and fN
Tt
, perhaps less so for fN

Tc
. Therefore, we also estimate �p

SI using these calculations

in the full six-flavour formula (3), for comparison with the three-quark formula (5) and

the four-quark formula (7) evaluated using the available numerical estimates of fN
Tc
. As we

discuss later, we consider the O(↵3
s) six-flavour approach to be the best available at the

present time.

In order to evaluate (5) we need estimates of the matrix elements hN |ūu, d̄d, s̄s|Ni, for

which isospin invariance ensures that hp|ūu|pi = hn|d̄d|ni = Bp
u, hp|d̄d|pi = hn|ūu|ni = Bp

d

and hp|s̄s|pi = hn|s̄s|ni = Bp
s . An expression for one combination of these quantities is

provided by the pion-nucleon � term

⌃⇡N =
1

2
(mu +md) (B

p
u +Bp

d) , (8)

which may be extracted phenomenologically from data on low-energy ⇡-nucleon scattering

or on pionic atoms [8]. In order to determine Bp
s , (8) has often been used in combination

with the quantity

�0 =
1

2
(mu +md) (B

p
u +Bp

d � 2Bp
s ) , (9)

which can be extracted phenomenologically from the octet baryon mass splittings, tak-

ing into account corrections that can be calculated in baryonic chiral perturbation theory

(B�PT). One then has

�s = msB
p
s =

ms

mu +md
(⌃⇡N � �0) , (10)

which is often parameterized by

y = 1�
�0

⌃p
⇡N

=
2Bp

s

Bp
u +Bp

d

. (11)

However, alternatives to these phenomenological estimates are now provided by the many

lattice calculations that are now available, as we discuss in Section 2.2 below.

In order to evaluate ⌃⇡N , we also need values for the ratios of quark masses mu/md

and ms/md. In the past [11, 23], we have used the estimates

mu

md
= 0.553(43),

ms

md
= 18.9(8) (12)

from [24], whereas the Particle Data Group (PDG) now quotes the following lattice esti-

mates [25]:

mu

md
= 0.46(5),

2ms

mu +md
= 27.5(3), !

ms

md
= 20.1(8) . (13)

The PDG lattice review also quotes the following absolute values of the light quark masses

in the MS scheme at a renormalization scale of 2 GeV:

mu = 2.15(15) MeV, md = 4.70(20) MeV, ms = 93.5± 2 MeV . (14)
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5

In contrast, in its Summary Tables the PDG quotes the broader ranges [25]

mu

md
= 0.38 to 0.58,

2ms

mu +md
= 27.3(7),

ms

md
= 17 to 22 (15)

and

mu = 2.2+0.6
�0.4 MeV, md = 4.7+0.5

�0.4 MeV, ms = 96+8
�4 MeV . (16)

As we discuss below, the resulting elastic scattering cross sections we study are relatively

insensitive to the values of the quark mass ratios and are completely insensitive to the

absolute value of the quark mass (e.g. md). For definiteness, we use (14) for the value of

the strange quark mass and (13) for the values of the quark mass ratios.

The quantities Bu + Bd and Bs discussed above su�ce to calculate the matrix ele-

ments for scattering o↵ nuclei with equal numbers of protons and neutrons, but additional

information is required to calculate the di↵erence between the cross sections for scattering

o↵ protons and neutrons, or for the scattering o↵ nuclei with general values of (A,Z), as

seen in (2).

Another combination of the Bp
q was calculated [26] using octet baryon masses in the

relation:

z ⌘
Bp

u � Bp
s

Bp
d � Bp

s
=

m⌅0 +m⌅� �mp �mn

m⌃+ +m⌃� �mp �mn
= 1.49 . (17)

The uncertainty associated with measurements of the octet baryon masses is very small,

but the accuracy of the octet mass formula (17) is subject to question [27].

Alternatively, one can calculate z from the ratio

z =
2� (1 +

Bp
d

Bp
u
)y

(2� y)
Bp

d
Bp

u
� y

(18)

once Bp
u/B

p
d and the value of y are known. For example, the ratio Bp

u/B
p
d can be calculated

from the QCD contribution to the proton-neutron mass di↵erence:

mp �mn|QCD = (mu �md) (B
p
u � Bp

d) , (19)

in combination with (8):

⇣
mu
md

� 1
⌘

⇣
mu
md

+ 1
⌘

⇣
1�

Bp
d

Bp
u

⌘

⇣
1 +

Bp
d

Bp
u

⌘ =
(mp �mn)|QCD

2⌃⇡N
, (20)

using the value (13) of mu/md. The measured mass di↵erence mp � mn = �1.29 MeV

(with negligible uncertainty) and the electromagnetic contribution is estimated to be mp�

mn|QED = 1.04(11) MeV [28], leading to mp � mn|QCD = �2.33(11) MeV. Inserting the

6

= 36 ± 7 MeV
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d

and hp|s̄s|pi = hn|s̄s|ni = Bp
s . An expression for one combination of these quantities is

provided by the pion-nucleon � term

⌃⇡N =
1

2
(mu +md) (B

p
u +Bp

d) , (8)

which may be extracted phenomenologically from data on low-energy ⇡-nucleon scattering

or on pionic atoms [8]. In order to determine Bp
s , (8) has often been used in combination

with the quantity

�0 =
1

2
(mu +md) (B

p
u +Bp

d � 2Bp
s ) , (9)

which can be extracted phenomenologically from the octet baryon mass splittings, tak-

ing into account corrections that can be calculated in baryonic chiral perturbation theory

(B�PT). One then has

�s = msB
p
s =

ms

mu +md
(⌃⇡N � �0) , (10)

which is often parameterized by

y = 1�
�0

⌃p
⇡N

=
2Bp

s

Bp
u +Bp

d

. (11)

However, alternatives to these phenomenological estimates are now provided by the many

lattice calculations that are now available, as we discuss in Section 2.2 below.

In order to evaluate ⌃⇡N , we also need values for the ratios of quark masses mu/md

and ms/md. In the past [11, 23], we have used the estimates

mu

md
= 0.553(43),

ms

md
= 18.9(8) (12)

from [24], whereas the Particle Data Group (PDG) now quotes the following lattice esti-

mates [25]:

mu

md
= 0.46(5),

2ms

mu +md
= 27.5(3), !

ms

md
= 20.1(8) . (13)

The PDG lattice review also quotes the following absolute values of the light quark masses

in the MS scheme at a renormalization scale of 2 GeV:

mu = 2.15(15) MeV, md = 4.70(20) MeV, ms = 93.5± 2 MeV . (14)

5

and fN
Tt
, perhaps less so for fN

Tc
. Therefore, we also estimate �p

SI using these calculations

in the full six-flavour formula (3), for comparison with the three-quark formula (5) and

the four-quark formula (7) evaluated using the available numerical estimates of fN
Tc
. As we

discuss later, we consider the O(↵3
s) six-flavour approach to be the best available at the

present time.

In order to evaluate (5) we need estimates of the matrix elements hN |ūu, d̄d, s̄s|Ni, for
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Another combination of the Bp
q was calculated [26] using octet baryon masses in the
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= 1.49 . (17)

The uncertainty associated with measurements of the octet baryon masses is very small,

but the accuracy of the octet mass formula (17) is subject to question [27].

Alternatively, one can calculate z from the ratio

z =
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Bp
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Bp
u
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(2� y)
Bp

d
Bp

u
� y
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once Bp
u/B

p
d and the value of y are known. For example, the ratio Bp

u/B
p
d can be calculated

from the QCD contribution to the proton-neutron mass di↵erence:

mp �mn|QCD = (mu �md) (B
p
u � Bp

d) , (19)

in combination with (8):

⇣
mu
md

� 1
⌘

⇣
mu
md

+ 1
⌘

⇣
1�

Bp
d

Bp
u

⌘

⇣
1 +

Bp
d

Bp
u

⌘ =
(mp �mn)|QCD

2⌃⇡N
, (20)

using the value (13) of mu/md. The measured mass di↵erence mp � mn = �1.29 MeV

(with negligible uncertainty) and the electromagnetic contribution is estimated to be mp�

mn|QED = 1.04(11) MeV [28], leading to mp � mn|QCD = �2.33(11) MeV. Inserting the
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Figure 1: Left: �p
SI vs ⌃⇡N for �0 = 20, 36, 50 MeV. Right: �p

SI vs �0 for ⌃⇡N = 40, 50, 60

MeV. The color bands show the 1-� uncertainty in the elastic cross section calculated using

the three-flavour expression (5).

this yields �s = 192(136) MeV. Another global fitting group, the GAMBIT Collaboration

(see, e.g., [36]), has, on the other hand, been using the smaller value �s = 43(8) MeV, which

is based on a compilation of lattice data made in 2011 [37], together with a larger value

of ⌃⇡N = 58(9) MeV. This combination corresponds to �0 = 55 MeV, considerably larger

than the estimate from octet baryon mass di↵erences [31], but within the range argued

in [12] to be consistent with B�PT.

Here we revisit the uncertainties in ⌃⇡N and �s based on the considerable e↵ort during

the last decade made since [11], using lattice and other techniques, to determine ⌃⇡N and

�s [38]. Although most of these recent values have been obtained from lattice calculations,

many have been based on the phenomenology of low-energy ⇡-nucleon interactions, and

some have made extensive use of chiral perturbation theory, often in combination with

lattice techniques. As already commented in [39], and discussed in more detail below, there

is tension between these various estimates, and the uncertainties are not purely statistical.

The left panel of Fig. 2 displays all the estimates of ⌃⇡N that we use, and the right

panel displays all the estimates of �s that are included in our analysis. We have tried

to make a complete selection of all the determinations of these quantities that have not

been superseded by later analyses by strongly-overlapping research groups. In each case,

we have indicated by colour coding the primary phenomenological technique used in the

calculation, and we have also indicated the corresponding arXiv reference number. We also

indicate by shaded bands in Fig. 2 the estimates of ⌃⇡N and �s that we make on the basis

of this new compilation, using the prescription that we describe below. More details of the

determinations we use, including their numerical values, are given in Table 1 3.

3We apologize in advance to authors whose work we have overlooked or misrepresented in compiling
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e.g. ΣπN = 50 ± 7 MeV σ0 = 36 ± 7 MeV ⇒ σpSI = (2.5 ± 1.5) x 10-9 pb 

for m1/2 = 3 TeV, m0 = 8.2 TeV, A0 = 0, tan β = 10, μ > 0 mχ = 1.1 TeV
Ellis, Nagata, Olive



Figure 2: Left panel: Recent values of ⌃⇡N . Right panel: Recent values of �s. Calcula-

tions based mainly on lattice calculations are indicated in red, and those relying more on

phenomenological inputs are indicated in green. We also show the estimates made in pre-

vious compilations [23,36] (blue), and the values we estimate now on the basis of our new

compilation (bottom line and vertical grey bands).

We now discuss the combinations of these estimates using the procedures adopted by

the Particle Data Group (PDG) in cases where the uncertainties are not simply statisti-

cal [25]. Assuming uncorrelated Gaussian probability distributions for each of the estimates

of ⌃⇡N shown in the left panel of Fig. 2, we first construct the ideogram4 shown in the left

panel of Fig. 3. As can be discerned from Fig. 2, the values of ⌃⇡N are broadly distributed

between 40-60 MeV, and the ideogram exhibits 3 minor peaks, slightly favoring the lower

part of the range.

A naive weighted mean of all 21 determinations of ⌃⇡N yields

Naive : ⌃⇡N = 46.1± 1.3 MeV , (22)

where we have combined statistical and systematic uncertainties in quadrature and centred

asymmetric errors. It is clear, however, that this naive estimate would be a poor represen-

tation of the ideogram. One option proposed by the PDG under such circumstances is to

rescale the error so that the �2/d.o.f.= 1. In this case, the required renormalization factor

is 1.7, yielding

Rescaled : ⌃⇡N = 46.1± 2.2 MeV . (23)

this Table, and welcome suggestions for its completion and improvement.
4The ideogram is constructed using the prescription of the PDG [25], and is a sum of Gaussians for

each measurement with an area normalized to be 1/�i where �i is the uncertainty in the measurement.
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Figure 3: Left panel: Ideogram combining all values of ⌃⇡N from Table 1. The vertical

(pink) bar corresponds to the estimate (23). Right panel: The same ideogram compared

with a (red) Gaussian centred at ⌃⇡N = 46 MeV with error � = 11 MeV.

ridge top that is broader than the rescaled distribution (23) 5. The rescaled value is

displayed in the left panel of Fig. 3 as a vertical pink bar, for comparison with the ideogram.

As an alternative, we present in the right panel of Fig. 3 a representation of the

estimates as a single Gaussian with the same normalization as the ideogram, and with its

central value and error chosen to reproduce the 95% CL range of the ideogram as closely

as possible:

Gaussian representation : ⌃⇡N = 46± 11 MeV . (24)

Although this functional form is far from perfect, we consider it a simple but fair represen-

tation of current estimates of ⌃⇡N .

Fig. 4 shows the result of a similar exercise for the 23 determinations of �s that we

use. In this case the ideogram has (barely) visible support out to very large values, but

most of the numerical values have support only for �s < 100 MeV. Following the same

steps as used previously for ⌃⇡N , we find

Naive : �s = 35.2± 2.6 MeV ,

Rescaled : �s = 35.2± 3.1 MeV ,

Gaussian representation : �s = 35± 16 MeV . (25)

In this case the distribution obtained from the numerical estimates is again not symmetric,

though it has a single-peak structure, and the representation (25) may again be considered

a simple but fair representation of of current estimates of �s.

5This feature may reflect the existence of unidentified systematic uncertainties that a↵ect di↵erent

lattice methods and B�PT approaches in di↵erent ways.
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Figure 3: Left panel: Ideogram combining all values of ⌃⇡N from Table 1. The vertical

(pink) bar corresponds to the estimate (23). Right panel: The same ideogram compared

with a (red) Gaussian centred at ⌃⇡N = 46 MeV with error � = 11 MeV.

ridge top that is broader than the rescaled distribution (23) 5. The rescaled value is

displayed in the left panel of Fig. 3 as a vertical pink bar, for comparison with the ideogram.

As an alternative, we present in the right panel of Fig. 3 a representation of the

estimates as a single Gaussian with the same normalization as the ideogram, and with its

central value and error chosen to reproduce the 95% CL range of the ideogram as closely

as possible:

Gaussian representation : ⌃⇡N = 46± 11 MeV . (24)

Although this functional form is far from perfect, we consider it a simple but fair represen-

tation of current estimates of ⌃⇡N .

Fig. 4 shows the result of a similar exercise for the 23 determinations of �s that we

use. In this case the ideogram has (barely) visible support out to very large values, but

most of the numerical values have support only for �s < 100 MeV. Following the same

steps as used previously for ⌃⇡N , we find

Naive : �s = 35.2± 2.6 MeV ,

Rescaled : �s = 35.2± 3.1 MeV ,

Gaussian representation : �s = 35± 16 MeV . (25)

In this case the distribution obtained from the numerical estimates is again not symmetric,

though it has a single-peak structure, and the representation (25) may again be considered

a simple but fair representation of of current estimates of �s.

5This feature may reflect the existence of unidentified systematic uncertainties that a↵ect di↵erent

lattice methods and B�PT approaches in di↵erent ways.
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Figure 2: Left panel: Recent values of ⌃⇡N . Right panel: Recent values of �s. Calcula-

tions based mainly on lattice calculations are indicated in red, and those relying more on

phenomenological inputs are indicated in green. We also show the estimates made in pre-

vious compilations [23,36] (blue), and the values we estimate now on the basis of our new

compilation (bottom line and vertical grey bands).

We now discuss the combinations of these estimates using the procedures adopted by
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this Table, and welcome suggestions for its completion and improvement.
4The ideogram is constructed using the prescription of the PDG [25], and is a sum of Gaussians for

each measurement with an area normalized to be 1/�i where �i is the uncertainty in the measurement.
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In the cases of the other light quarks, the expressions for f p
Tq

are more complicated:

mpf
p
Tu

=
2⌃⇡N

(1 + md
mu

)(1 + Bd
Bu

)
=

2mu

mu +md


z

1 + z
⌃⇡N +

mu +md

2ms

1� z

1 + z
�s

�

mpf
p
Td

=
2⌃⇡N

(1 + mu
md

)(1 + Bu
Bd

)
=

2md

mu +md


1

1 + z
⌃⇡N �

mu +md

2ms

1� z

1 + z
�s

�
, (29)

where the right-hand sides of the equations allow us to compute the f p
Tq

directly from our

inputs. To obtain the uncertainties in f p
Tu,d

, we propagate the uncertainties in ⌃⇡N , the

light quark mass ratio mu/md = 0.46±0.05 (13), and in the ratio Bd/Bu given in Eq. (18).

This depends on the uncertainty in y, and hence depends ultimately on the uncertainties in

ms/(mu+md) = 13.75±0.15 and �s. The expression (27) takes into account the correlation

in the uncertainties between the light and heavy quark contributiions.

We have verified in the benchmark model assumed that the uncertainties in mu/md

and in ms/md given in (14) contribute very small uncertainties to �p
SI , a few per mille

and below one per mille respectively. The uncertainty due to Bp
d/B

p
u is also small, at

the ±2% level for 1 < z < 2 6. We note that our benchmark point is taken from a

supersymmetric theory and the scattering of the dark matter candidate in this model on

a proton is dominated by the heavy quark content. It is quite possible that other dark

matter candidates are more sensitive to the scattering o↵ of light quarks and in that case,

the uncertainty due to Bp
d/B

p
u and z is more important.

We display in Fig. 7 contours of �p
SI (in units of 10�9 pb) in the (⌃⇡N , �s) plane

calculated using the three-flavour expression (5), together with the two-dimensional 68%

and 95% CL regions (��2 < 2.3 and 5.99, respectively) given by our Gaussian fits (24, 25)

to ⌃⇡N and �s, assuming that there is no correlation, as discussed above.

Using our values for ⌃⇡N (24) and �s (25) that are also given in the last line of Table

1, we find �p
SI = (1.25 ± 0.13) ⇥ 10�9 pb when we use the three-flavour expression (5) for

our CMSSM benchmark point. The decrease in the cross section (by a factor of 2) relative

to what we would have calculated using the values of ⌃⇡N and �0 used in [23] is due largely

to the e↵ective reduction in �s. Moreover, the uncertainty in the cross section is a factor

of 10 smaller. This reduction can be traced to using �s (and its uncertainty) directly from

the recent calculations - as we recommend - rather than using the value inferred from (10)

and the older values of ⌃⇡N and �0.

6Over this range of z, �p
SI/�

n
SI varies between 1.00 and 0.94.
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1-loop improved calculations for σcbt
0.917± 0.019, we find

�c =
2

27

�
�0.3 + 1.48f p

TG

�
mp = 73.4± 1.9 MeV . (33)

Also shown in Fig. 9 is a vertical pink band corresponding to this evaluation of the O(↵3
s)

perturbative QCD calculation [69]. It has been argued (see [72] for a review) that there

may be non-perturbatively-generated intrinsic charm in the nucleon, in which case the

perturbative calculation leading to (33) would be inapplicable. Another potential source

of di↵erence is caused by higher-dimensional operators that are induced when the charmed

quark is integrated out [69], which are suppressed only by the charmed quark mass and

thus may give a significant contribution to the nucleon mass. The di↵erence between (30)

and (33) may serve as a measure of the uncertainty associated with these possibilities.

Similar O(↵3
s) perturbative QCD calculations for the b and t quarks are expected to

be more reliable, and yield [69]:

�b =
2

27

�
�0.16 + 1.23fN

TG

�
MN , (34)

�t =
2

27

�
�0.05 + 1.07fN

TG

�
MN , (35)

which, in combination with our estimates (24, 25) of ⌃⇡N and �s, and f p
TG

yield

�b = 67.3± 1.6 MeV , �t = 64.7± 1.4 MeV , (36)

for the proton. Using the O(↵3
s) perturbative calculations of �c (33) and of �b,t (36) in a full

six-flavour calculation, we find �p
SI = (1.38±0.17)⇥10�9 pb. The origin of the increase from

the three-flavour approximation to the full six-flavour calculation is primarily the fact that

the more detailed perturbative treatment of the heavy quarks increases their contributions,

particularly that of the charmed quark, by O(15)%.

We consider the full six-flavour calculation using the estimates (24, 25, 33) and (36) to

be the best approximation to the spin-independent WIMP scattering cross section currently

available.

3 Spin-Dependent WIMP-Nucleon Scattering

In the case of the cross section �SD for spin-dependent WIMP-nucleon scattering, the rele-

vant matrix elements hN |q̄i�µ�5qi|Ni are related to the corresponding quark contributions

to the nucleon spin �qi. The combination �u��d = gA = 1.27, the axial-current matrix

element in neutron �-decay, which is known quite precisely. We estimate the combination
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Figure 10: Left: �p
SI vs �c for fixed ⌃⇡N = 46 MeV and �s = 30, 50, 100 MeV. Right: �p

SI

vs �c = �b = �t for fixed ⌃⇡N = 46 MeV and �s = 30, 50, 100 MeV.

�u+�d�2�s = 0.59 using other octet baryon weak decay matrix elements and SU(3) sym-

metry. A third combination of the light-quark �qi can be determined from parity-violating

asymmetries in polarized deep-inelastic electron- and muon-nucleon scattering [73], which

indicate a small but non-zero negative value of �s = �0.09±0.03 when combined with the

above-mentioned estimated of �u��d and �u+�d�2�s. Measurements of hadron pro-

duction asymmetries in polarized deep-inelastic scattering do not support a non-zero value

of �s. Nevertheless, this confusion in the estimates of the �qi generates only moderate

uncertainty in the cross section for spin-dependent WIMP-nucleon scattering, �SD.

For the CMSSM focus-point benchmark point introduced above, we find that the value

�s = �0.09±0.03 indicated by the parity-violating asymmetries in the total polarized deep-

inelastic cross sections leads to �p
SD = (9.4±0.8)⇥10�7 pb, whereas the choice�s = 0±0.03

would yield �p
SD = (8.2±0.7)⇥10�7 pb. The uncertainty in the spin-dependent cross section

is largely determined by the uncertainty in �s, and ignoring the uncertainty in �s would

reduce the uncertainty in �p
SD to ±0.2. The corresponding cross-section for scattering o↵

neutrons is �p
SD = (7.1±0.7)⇥10�7 pb for �s = �0.09. When �s = 0, there is virtually no

di↵erence between the cross sections for scattering on protons and neutrons. We conclude

that the uncertainties in spin-dependent WIMP-nucleon scattering are comparable to the

current uncertainties in spin-independent WIMP-nucleon scattering that have been the

main focus of this paper.

4 Conclusions

We have re-analyzed in this paper ingredients in the calculation of the cross section for

the spin-independent scattering of a massive WIMP on a nucleon. Based on available

19

Ellis, Nagata, Olive



Weak (?) scale  
supersymmetric dark matter



Weak (?) scale  
supersymmetric dark matter

Viable regions of parameter space with 
dark matter is found along strips:



Weak (?) scale  
supersymmetric dark matter

Viable regions of parameter space with 
dark matter is found along strips:

Stau-coannhilation Strip 

extends only out to ~1 TeV 
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Other Possibilities  
(with PeV scales)

Pure Gravity Mediation 

2 parameter model with very large scalar masses 

m0 = m3/2, tan β 

mAMSB 

similar to PGM, but allows m0 ≠ m3/2

More Constrained (fewer parameters)

DM density/Higgs mass saturate for mSUSY ~ O(10) TeV 
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mAMSBMastercode 2017
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Even Larger Mass Scales

What if the entire SUSY matter spectrum were very 
large 

with only the gravitino remaining “light”

1 parameter model: m3/2
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Gravitino Mass Limits

For m3/2 ~ 10-1000 GeV 

Gravitino decays to the LSP/NLSP decays to the gravitino:

Lifetimes 100-108 s ⇒ BBN limits

2

given by [14, 15, 31]
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where C depends on the neutralino diagonalization ma-
trix and we have ignored phase space factors (and other
factors of O(1)). In the case of a gravitino LSP, there
are typically strong constraints on the SUSY parameter
space forcing one into regions where the NLSP is the tau
slepton [28, 29].

The BBN constraints begin to be relaxed when the
lifetime of the NLSP becomes less than O(100) s [26, 27],
and for a neutralino NLSP, we can use Eq.(1) to obtain
a relation between the neutralino and gravitino masses,

⌧� . 100 s. ) m� > 300 GeV
⇣m3/2

GeV

⌘2/5
(2)

for C ⇠ 1. Thus avoiding the limits from BBN will re-
quire a rather heavy SUSY spectrum for TeV scale (and
above) gravitino masses. We note that the relaxation
of the BBN bound at 100 s requires satisfying the upper
bound on the density of decaying particles of roughly [26],
m�n�/n� . 7⇥ 10�9 GeV. If we exceed this density, we
must use the more strict BBN bound of ⌧� . 0.1s. In
this case, the lower limit on m� in Eq.(2) is increased by
a factor of ⇠ 4.

In addition to the BBN constraints, there is an ad-
ditional constraint coming from the relic density of the
NLSP whose decay contributes to the relic density of
gravitinos [21–23]. The gravitino relic density from NLSP
decays can be written simply as

⌦3/2h
2 =

m3/2

m�

⌦�h
2 (3)

and thus the NLSP relic density is limited by

⌦�h
2 . 0.12

m�

m3/2
(4)

where 0.12 is the approximate upper limit on the cold
dark matter density from PLANCK experiment [32]. As
long as m� is not much greater than m3/2, the NLSP
density is constrained to be near the cold dark matter
density. Even in the event that m� � m3/2, the relic
density of the NSLP is still constrained by the BBN un-
less its lifetime is very short (< 0.1 s) as noted above.

Thus as we attempt to increase the mass of a gravitino
LSP, we are forced to higher NLSP masses to insure both
a relatively short lifetime and low relic density. For ex-
ample, for m3/2 = 2 TeV, we must require m� & 6 TeV
(20 TeV) to obtain ⌧� < 100 s (< 0.1s). Generally, it
is very di�cult to obtain an acceptable neutralino relic
density when the neutralino masses surpass the TeV scale
[6, 7]. In particular, the neutralino relic density in the
TeV regime must be regulated by either some strong res-
onant process or co-annihilation. Indeed, the strongest

such process involves the co-annihilation with the gluino
[33–36]. Pushing the mass scales to their limit (when the
neutralino and gluino masses are degenerate), an upper
limit to the neutralino mass of roughly 8 TeV was found
[34–36]. This translates (using Eq. 2) to an upper bound
on the gravitino mass of roughly m3/2 < 4 TeV.

III. HIGH SCALE SUSY BREAKING AND
INFLATION - EEV SCALE GRAVITINOS

A. High scale SUSY

In order to go beyond the derived upper limit on the
gravitino mass of 4 TeV, we must make a more substan-
tial departure from the common paradigm of weak scale
supersymmetry. In this section, we consider the possibil-
ity for a higher gravitino masses along with a very high
SUSY breaking scale, leaving only the gravitino surviving
at low energies as a dark matter candidate.

As we demonstrated in the previous section, a grav-
itino mass in excess of 4 TeV, would require a SUSY
spectrum in excess of 8 TeV in order to obtain NLSP
lifetimes short enough to be compatible with constraints
from BBN. However, even in the limit of degenerate neu-
tralinos and gluinos, strong co-annihilations are insu�-
cient to lower the NLSP relic density to acceptable lev-
els. Further increasing the SUSY mass scale, weakens
the interaction strengths, lowering the annihilation (and
co-annihilation) cross sections, leading to an overabun-
dance. Without resorting to some unknown form of dilu-
tion, one possibility for larger gravitino masses is to move
the SUSY matter spectrum to such high scales, so that
SUSY particles were never part of the thermal bath after
inflation.

To completely remove the supersymmetric particle
spectrum from the thermal history, we must assume that
the SUSY mass spectrum is larger than both the in-
flationary reheating temperature, TR, and the inflaton
mass, m�, so as to prevent SUSY particles from being
produced by either thermal processes during reheating
or by the decay of the inflaton. Here, we will not tie our-
selves to a particular inflationary model, but note that
in many models considered, the inflaton mass is set by
amplitude of density perturbations seen in the microwave
background, and yields a value of roughly 3⇥ 1013 GeV.
When we need to refer to a specific example, we consider
a no-scale supergravity model of inflation [37] which leads
to Starobinsky-like inflation [38].

If we denote as F the order parameter for supersym-
metry breaking, then typical soft SUSY masses will be
proportional to F ,

MSUSY =
F

⇤mess

(5)

where ⇤mess is the mass scale associated with the medi-

NLSP → gravitino + γ

τχ ≾ 100 s ⇒ mχ > 300 GeV (m3/2/GeV)2/5



Gravitino Mass Limits

Relic Density:
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where C depends on the neutralino diagonalization ma-
trix and we have ignored phase space factors (and other
factors of O(1)). In the case of a gravitino LSP, there
are typically strong constraints on the SUSY parameter
space forcing one into regions where the NLSP is the tau
slepton [28, 29].

The BBN constraints begin to be relaxed when the
lifetime of the NLSP becomes less than O(100) s [26, 27],
and for a neutralino NLSP, we can use Eq.(1) to obtain
a relation between the neutralino and gravitino masses,
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for C ⇠ 1. Thus avoiding the limits from BBN will re-
quire a rather heavy SUSY spectrum for TeV scale (and
above) gravitino masses. We note that the relaxation
of the BBN bound at 100 s requires satisfying the upper
bound on the density of decaying particles of roughly [26],
m�n�/n� . 7⇥ 10�9 GeV. If we exceed this density, we
must use the more strict BBN bound of ⌧� . 0.1s. In
this case, the lower limit on m� in Eq.(2) is increased by
a factor of ⇠ 4.

In addition to the BBN constraints, there is an ad-
ditional constraint coming from the relic density of the
NLSP whose decay contributes to the relic density of
gravitinos [21–23]. The gravitino relic density from NLSP
decays can be written simply as
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where 0.12 is the approximate upper limit on the cold
dark matter density from PLANCK experiment [32]. As
long as m� is not much greater than m3/2, the NLSP
density is constrained to be near the cold dark matter
density. Even in the event that m� � m3/2, the relic
density of the NSLP is still constrained by the BBN un-
less its lifetime is very short (< 0.1 s) as noted above.

Thus as we attempt to increase the mass of a gravitino
LSP, we are forced to higher NLSP masses to insure both
a relatively short lifetime and low relic density. For ex-
ample, for m3/2 = 2 TeV, we must require m� & 6 TeV
(20 TeV) to obtain ⌧� < 100 s (< 0.1s). Generally, it
is very di�cult to obtain an acceptable neutralino relic
density when the neutralino masses surpass the TeV scale
[6, 7]. In particular, the neutralino relic density in the
TeV regime must be regulated by either some strong res-
onant process or co-annihilation. Indeed, the strongest

such process involves the co-annihilation with the gluino
[33–36]. Pushing the mass scales to their limit (when the
neutralino and gluino masses are degenerate), an upper
limit to the neutralino mass of roughly 8 TeV was found
[34–36]. This translates (using Eq. 2) to an upper bound
on the gravitino mass of roughly m3/2 < 4 TeV.

III. HIGH SCALE SUSY BREAKING AND
INFLATION - EEV SCALE GRAVITINOS

A. High scale SUSY

In order to go beyond the derived upper limit on the
gravitino mass of 4 TeV, we must make a more substan-
tial departure from the common paradigm of weak scale
supersymmetry. In this section, we consider the possibil-
ity for a higher gravitino masses along with a very high
SUSY breaking scale, leaving only the gravitino surviving
at low energies as a dark matter candidate.

As we demonstrated in the previous section, a grav-
itino mass in excess of 4 TeV, would require a SUSY
spectrum in excess of 8 TeV in order to obtain NLSP
lifetimes short enough to be compatible with constraints
from BBN. However, even in the limit of degenerate neu-
tralinos and gluinos, strong co-annihilations are insu�-
cient to lower the NLSP relic density to acceptable lev-
els. Further increasing the SUSY mass scale, weakens
the interaction strengths, lowering the annihilation (and
co-annihilation) cross sections, leading to an overabun-
dance. Without resorting to some unknown form of dilu-
tion, one possibility for larger gravitino masses is to move
the SUSY matter spectrum to such high scales, so that
SUSY particles were never part of the thermal bath after
inflation.

To completely remove the supersymmetric particle
spectrum from the thermal history, we must assume that
the SUSY mass spectrum is larger than both the in-
flationary reheating temperature, TR, and the inflaton
mass, m�, so as to prevent SUSY particles from being
produced by either thermal processes during reheating
or by the decay of the inflaton. Here, we will not tie our-
selves to a particular inflationary model, but note that
in many models considered, the inflaton mass is set by
amplitude of density perturbations seen in the microwave
background, and yields a value of roughly 3⇥ 1013 GeV.
When we need to refer to a specific example, we consider
a no-scale supergravity model of inflation [37] which leads
to Starobinsky-like inflation [38].

If we denote as F the order parameter for supersym-
metry breaking, then typical soft SUSY masses will be
proportional to F ,

MSUSY =
F

⇤mess

(5)

where ⇤mess is the mass scale associated with the medi-
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where C depends on the neutralino diagonalization ma-
trix and we have ignored phase space factors (and other
factors of O(1)). In the case of a gravitino LSP, there
are typically strong constraints on the SUSY parameter
space forcing one into regions where the NLSP is the tau
slepton [28, 29].

The BBN constraints begin to be relaxed when the
lifetime of the NLSP becomes less than O(100) s [26, 27],
and for a neutralino NLSP, we can use Eq.(1) to obtain
a relation between the neutralino and gravitino masses,

⌧� . 100 s. ) m� > 300 GeV
⇣m3/2

GeV

⌘2/5
(2)

for C ⇠ 1. Thus avoiding the limits from BBN will re-
quire a rather heavy SUSY spectrum for TeV scale (and
above) gravitino masses. We note that the relaxation
of the BBN bound at 100 s requires satisfying the upper
bound on the density of decaying particles of roughly [26],
m�n�/n� . 7⇥ 10�9 GeV. If we exceed this density, we
must use the more strict BBN bound of ⌧� . 0.1s. In
this case, the lower limit on m� in Eq.(2) is increased by
a factor of ⇠ 4.

In addition to the BBN constraints, there is an ad-
ditional constraint coming from the relic density of the
NLSP whose decay contributes to the relic density of
gravitinos [21–23]. The gravitino relic density from NLSP
decays can be written simply as
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and thus the NLSP relic density is limited by

⌦�h
2 . 0.12

m�

m3/2
(4)

where 0.12 is the approximate upper limit on the cold
dark matter density from PLANCK experiment [32]. As
long as m� is not much greater than m3/2, the NLSP
density is constrained to be near the cold dark matter
density. Even in the event that m� � m3/2, the relic
density of the NSLP is still constrained by the BBN un-
less its lifetime is very short (< 0.1 s) as noted above.

Thus as we attempt to increase the mass of a gravitino
LSP, we are forced to higher NLSP masses to insure both
a relatively short lifetime and low relic density. For ex-
ample, for m3/2 = 2 TeV, we must require m� & 6 TeV
(20 TeV) to obtain ⌧� < 100 s (< 0.1s). Generally, it
is very di�cult to obtain an acceptable neutralino relic
density when the neutralino masses surpass the TeV scale
[6, 7]. In particular, the neutralino relic density in the
TeV regime must be regulated by either some strong res-
onant process or co-annihilation. Indeed, the strongest

such process involves the co-annihilation with the gluino
[33–36]. Pushing the mass scales to their limit (when the
neutralino and gluino masses are degenerate), an upper
limit to the neutralino mass of roughly 8 TeV was found
[34–36]. This translates (using Eq. 2) to an upper bound
on the gravitino mass of roughly m3/2 < 4 TeV.

III. HIGH SCALE SUSY BREAKING AND
INFLATION - EEV SCALE GRAVITINOS

A. High scale SUSY

In order to go beyond the derived upper limit on the
gravitino mass of 4 TeV, we must make a more substan-
tial departure from the common paradigm of weak scale
supersymmetry. In this section, we consider the possibil-
ity for a higher gravitino masses along with a very high
SUSY breaking scale, leaving only the gravitino surviving
at low energies as a dark matter candidate.

As we demonstrated in the previous section, a grav-
itino mass in excess of 4 TeV, would require a SUSY
spectrum in excess of 8 TeV in order to obtain NLSP
lifetimes short enough to be compatible with constraints
from BBN. However, even in the limit of degenerate neu-
tralinos and gluinos, strong co-annihilations are insu�-
cient to lower the NLSP relic density to acceptable lev-
els. Further increasing the SUSY mass scale, weakens
the interaction strengths, lowering the annihilation (and
co-annihilation) cross sections, leading to an overabun-
dance. Without resorting to some unknown form of dilu-
tion, one possibility for larger gravitino masses is to move
the SUSY matter spectrum to such high scales, so that
SUSY particles were never part of the thermal bath after
inflation.

To completely remove the supersymmetric particle
spectrum from the thermal history, we must assume that
the SUSY mass spectrum is larger than both the in-
flationary reheating temperature, TR, and the inflaton
mass, m�, so as to prevent SUSY particles from being
produced by either thermal processes during reheating
or by the decay of the inflaton. Here, we will not tie our-
selves to a particular inflationary model, but note that
in many models considered, the inflaton mass is set by
amplitude of density perturbations seen in the microwave
background, and yields a value of roughly 3⇥ 1013 GeV.
When we need to refer to a specific example, we consider
a no-scale supergravity model of inflation [37] which leads
to Starobinsky-like inflation [38].

If we denote as F the order parameter for supersym-
metry breaking, then typical soft SUSY masses will be
proportional to F ,

MSUSY =
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where ⇤mess is the mass scale associated with the medi-
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Figure 4. The (mχ,∆m ≡ mg̃ − mχ) planes for a Bino LSP, exhibiting bands where 0.1151 <
Ωχh2 < 0.1235 (3 σ below and above the current central value), for different values of mq̃/mg̃ = 1.1
(upper left), 10 (upper right), 50 (lower left) and 120 (lower right). These results are calculated
without the Sommerfeld enhancement factor and gluino bound-state formation (red bands), with
the Sommerfeld enhancement factor but without gluino bound-state formation (orange bands),
with both the Sommerfeld enhancement factor and gluino bound-state formation (black bands),
and allowing for the possibility that the bound-state formation rate is a factor 2 larger than our
calculations (purple bands).
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Gluino coannihilation

Ellis, Luo, Olive

mχ < 8 TeV ⇒ m3/2 < 4 TeV

heavier gravitino → heavier neutralino
  → Ωχh2 too large → Ω3/2h2 too large

τχ ≾ 100 s ⇒ mχ > 300 GeV (m3/2/GeV)2/5



Gravitino Mass Limits

m3/2 < 4 TeV unless(!) the susy spectrum lies 
above the inflationary scale.

For Msusy ~ F1/2 > minfl ~ 3 × 1013 GeV

3

ators of supersymmetry breaking2. We expect ⇤mess �
MSUSY . Thus MSUSY > m� translates to F > m

2
�
. The

gravitino mass is also determined by F [39],

m3/2 =
Fp
3MP

(6)

And hence we have a lower bound on the gravitino mass
given by

m3/2 >
m

2
�p

3MP

' 0.2 EeV (7)

Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �

scat

N
[45, 46]. Fur-

thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn

dt
= n

2
�
h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
gluon ! gluino, gravitino are no longer kinematically al-
lowed. The rate for the latter is well known [40, 41] and
scales as � ⇠ T

3
M

2
SUSY

/M
2
P
m

2
3/2, where we have as-

sumed predominantly goldstino production in the limit
m3/2 ⌧ MSUSY . In this case, the gravitino abundance
is approximately n3/2/n� ⇠ �/H ⇠ TM

2
SUSY

/MPm
2
3/2,

where we have simply taken the Hubble parameter as
T

2
/MP .

In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2 These messengers could in principle also play a role in restoring
unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n
2h�vi ' 21.65⇥ T

12

F 4
(8)

where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T

8. This dependence can be
easily ascertained on dimensional grounds. Recall that
n / T

3, and for gravitino production, we expect h�vi /
T

6
/F

4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
R/n ⇠ T

9
/M

4
P
m

4
3/2 (again assuming m3/2 ⌧ MSUSY )

leading to a gravitino abundance n3/2/n� ⇠ �/H ⇠
T

7
/M

3
P
m

4
3/2. More precisely, we find,

⌦3/2h
2 ' 0.11
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0.1 EeV

m3/2

◆3 ✓
TRH

2.0⇥ 1010 GeV

◆7

(9)

In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
in the more common thermal scenario [40], thus favoring
thermal leptogenesis [48].

C. Consequences for inflationary models

The reheating temperature appearing in Eq.(9) is gen-
erated by the decay of an inflaton field � of mass m� and
width ��. We assume that the decay and thermalization
occur instantaneously at the time t�, ��t� = 2��/3H =
c, where c ⇡ 1.2 is a constant. In this case, the reheating
temperature is given by [41, 50]

TRH =
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10
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◆1/4 ✓2�� MP

⇡ c

◆1/2

= 0.55
y�
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m� MP

c
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(10)
where we have defined a standard ”yukawa”-like coupling

y� of the inflaton field to the thermal bath, �� =
y
2
�

8⇡m�

and gs is the e↵ective number of light degrees of freedom
in this case set by the Standard Model, gs = 427/4. We
can then re-express the relic abundance (9) as function
of y�:
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Thus we have a gravitino mass gap between 4 TeV and
0.2 EeV which remains cosmologically problematic.

B. Gravitino Production

Clearly the LHC bounds can be satisfied if the sparticle
mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
lies beyond the MSSM and has weaker couplings to mat-
ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
axial mediator to velocity suppress �
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thermore, if the dark matter couples too weakly with the
standard model, it will never reach thermal equilibrium
as its production rate is dn
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frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
Non-Equilibrium Thermal Dark Matter (NETDM) mod-
els [49].

By increasing the SUSY mass scale, we have also re-
moved most of the standard gravitino production mech-
anisms. Namely both NSLP decay, and the thermal pro-
duction from standard model annihilations such as gluon,
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lowed. The rate for the latter is well known [40, 41] and
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In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
sources of gravitino production. Inflaton decay to grav-
itinos [41, 42], and thermal production of two gravitinos

2 These messengers could in principle also play a role in restoring
unification at high scale.

from the thermal bath (gluon, gluon ! gravitino, grav-
itino) [43] as this is only kinematically allowed channel.
A careful computation of the gravitino production rate
was derived in [43]

R = n
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where n is the number density of incoming states and we
see that the rate has a strong dependence on temperature
and is even stronger than the NETDM case [49] where
the dependence is R(T ) / T
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3, and for gravitino production, we expect h�vi /
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4. The consequences of such a high temperature
dependence are important: we expect that all gravitino
production will occur early and rapidly in the reheating
process. This di↵ers from the feably coupled case [47]
where the smallness of the dark matter coupling to the
standard model bath renders the production rate slower.

From the rate R(T ), we can determine that � ⇠
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In the absence of direct inflaton decays, a gravitino at the
lower mass limit (7) would require a reheating tempera-
ture of roughly 3 ⇥ 1010 GeV, above the upper limit al-
lowed by the relic abundance constraint (TR . 107 GeV)
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0.2 EeV which remains cosmologically problematic.
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mass spectrum lies above a few TeV. The direct detection
limits can also be satisfied as the spectrum approaches
its upper limit [7]. It is also possible that the dark matter
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ter, e.g. through a t-channel exchange of a massive Z’ or
Higgs as shown in [44] or invoking a pseudoscalar or pure
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as its production rate is dn

dt
= n

2
�
h�vi. The particle is

frozen in during the process of thermalization. The weak
coupling of the dark sector with the standard model can
be due to either an e↵ectively small coupling (of the or-
der of 10�10 ) [47] or because the mass of the mediator
between the two sectors is very large, as in the case of
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In the limit that the SUSY mass scale is above the
inflationary scale, there remains, however, (at least) two
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Appendix) shows that the dominant contribution arises from �⌫ , leading to the interaction
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Bµ✓  ̄�µ�L ` h.c. . (5)

In the massless �L limit, the amplitude squared then becomes#1
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Anticipating that the LHu term will induce a mixing, parameterized by ✏, between �L (or

the Higgsino) and the neutrino (to be discussed in detail below), we can write �L „ ✏ ⌫. The

dominant decay channel is then  µ Ñ ⌫Z{h, with a width
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From the above argument, we can also anticipate that the Goldstino decay to ⌫� will be

suppressed since the photon does not have a longitudinal component. In the detailed cal-

culation the result (7) will be generalized to the non-Abelian, supersymmetric two Higgs

doublet case. In section 5, we will derive limits on ✏ from existing experimental constraints,

requiring in addition, that su�ciently many gravitinos are present today to supply the dark

matter.

3 R-Parity Violation

The simplest model including RPV only introduces a bilinear RPV operator:

W “ WMSSM ` WRPV, (8)

WMSSM “ µHuHd ` yeLHde
c ` yuQHuu

c ` ydQHdd
c
, (9)

WRPV “ µ
1
LHu. (10)

In general the RPV mass parameter µ1 depends on the lepton flavor, but here we omit the

flavor dependence for simplicity (for more detailed discussion, see, e.g., [15]). Note that we

have suppressed all generation indices in both (9) and (10). Since lepton number is no longer

conserved, L and Hd cannot be distinguished in this setup, and thus there is a field basis

#1As will be shown in the Appendix, the piece  ⌫ „ B⌫ {m3{2 leads to |M|2 „ m
2
3{2m

2
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{M2
P
where mA is

the gauge boson mass, which is highly suppressed when mA ! m3{2.
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By insisting that any lepton number violating rate involving µ
1 remains out-of-equilibrium

while sphaleron interactions are in equilibrium, i.e., between the weak scale and „ 1012 GeV

(where the latter is determined by comparing the sphaleron rate „ ↵
4

W
T to the Hubble rate),

the limit (25) is strongest for mf „ T , where T is of order the weak scale. For weak scale

supersymmetry, the fermion can be either a lepton or Higgsino, N “ 915{4 and at T „ 100

GeV, one obtains the limit [13]

µ
1 † 2 ˆ 10´5GeV . (26)

For weak scale supersymmetry this limit translates to ✏ À 10´7. This is stronger than the

limit from neutrino masses in weak scale supersymmetry models [15, 21].

In the case of high scale supersymmetry, while the Higgsino cannot be part of the ther-

mal bath, it can still mediate lepton number violating interactions, but the limit on µ
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This limit should now be applied at the highest temperatures at which sphalerons are in

equilibrium (T „ 1012 GeV), with N “ 427{4. Thus
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Figure 1: Branching ratios (top) and the deviation r (47), from the asymptotic value for

�tot (bottom) with M1 “ M2{2 “ µ “ rm “ 1014 GeV.

where the charge conjugate of the final state and the number of neutrinos are incorporated#6.

Thus the total decay width is given by

�tot »
✏
2
c
2

�
m

3

3{2
16⇡M2

P

, (46)

which is indeed a good approximation for m3{2 Á 1 TeV. Figure 1 (bottom) shows the

#6We have assumed that µ1 is flavor universal.
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deviation of the total decay width from this asymptotic value with M1 “ M2{2 “ µ “
1014 GeV, which is parametrized by

r “ �tot{
˜
✏
2
c
2

�
m

3

3{2
16⇡M2

P

¸
. (47)

Thus, in the large m3{2 limit, the gravitino lifetime is given by

⌧3{2 » 1028
ˆ
0.44 ˆ 10´20

✏c�

˙2 ˆ
1 EeV

m3{2

˙
3

s. (48)

In the next section, we derive a constraint on ✏, by ensuring that a) we have su�cient dark

matter and b) that the decay products do not exceed observational backgrounds.

5 Observational Constraints

5.1 PLANCK Constraints

Cosmological constraints on models with high scale supersymmetry are severe. Indeed,

the only way to produce the gravitino in the early Universe if the supersymmetry break-

ing scale lies above the reheating temperature#7, TRH , is through the exchange of highly

virtual sparticles with Planck-suppressed couplings, such as t-channel processes of the type

G G Ñ G̃ Ñ  µ  µ, with G, G̃ representing the gluon and gluino, respectively [8]. Because

the production rate is doubly Planck-suppressed, the abundance of dark matter produced

from the bath is very limited (proportional to T
7

RH
[8] as in Eq. (2)), requiring a massive

gravitino to compensate its low density. Moreover, it was shown in [7, 9] that considering

reheating processes involving inflaton decay imposes a lower bound on TRH Á 3 ˆ 1010 GeV

implying from Eq.(2) a lower bound on the gravitino mass m3{2 Á 0.2 EeV [7] to respect

PLANCK constraints [32] on the density of cold dark matter.

It is of interest to check this constraint in the context of models with the bilinear R-parity

breaking term in Eq. (10). In the context of high scale supersymmetry,

µ „ rm " µ
1 ñ ✏ “ µ

1
a
µ2 ` µ12 » µ

1

µ
» µ

1

rm . (49)

#7To be more precise, above the maximum temperature of the thermal bath Tmax which is di↵erent from

TRH if one considers non-instantaneous reheating [31].
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✏ = µ0/µ
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Even Larger Mass Scales

Planck Scale SUSY ≡ no susy at low energy

SO(10) GUT?
Hierarchy Problem - No 

Gauge Coupling Unification 

Stabilization of the Electroweak Vacuum 

Radiative Electroweak Symmetry Breaking 

Dark Matter -Yes 

Neutrino masses…



Summary

LHC susy and Higgs searches have pushed CMSSM-like 
models to “corners” or strips 

However, still viable and more so beyond the CMSSM 

But maybe the susy spectrum is very heavy 

Is Susy at the multi-TeV or PeV or EeV scale? 

Perhaps sparticles were never part of the thermal 
background, yet the gravitino may still be the dark matter! 

Can we learn more from a UV completion? 

Signatures at the EeV scale?


